The Bristol Hercules is a 14-cylinder two-row radial aircraft engine designed by Sir Roy Fedden and produced by the Bristol Engine Company starting in 1939. It was the most numerous of their single sleeve valve (Burt-McCollum, or Argyll, type) designs, powering many aircraft in the mid-World War II timeframe.
The Hercules powered a number of aircraft types, including Bristol's own Beaufighter heavy fighter design, although it was more commonly used on bombers. The Hercules also saw use in civilian designs, culminating in the 735 and 737 engines for such as the Handley Page Hastings C1 and C3 and Bristol Freighter. The design was also licensed for production in France by SNECMA.
Shortly after the end of World War I, the Shell company, Asiatic Petroleum, commissioned Harry Ricardo to investigate problems of fuel and engines. His book was published in 1923 as “The Internal Combustion Engine”. Ricardo postulated that the days of the poppet valve were numbered and that a sleeve valve alternative should be pursued.
The rationale behind the single sleeve valve design was two-fold: to provide optimum intake and exhaust gas flow in a two-row radial engine, improving its volumetric efficiency and to allow higher compression ratios, thus improving its thermal efficiency. The arrangement of the cylinders in two-row radials made it very difficult to utilise four valves per cylinder, consequently all non-sleeve valve two- and four-row radials were limited to the less efficient two-valve configuration. Also, as combustion chambers of sleeve-valve engines are uncluttered by valves, especially hot exhaust valves, so being comparatively smooth they allow engines to work with lower octane number fuels using the same compression ratio. Conversely, the same octane number fuel may be utilised while employing a higher compression ratio, or supercharger pressure, thus attaining either higher economy or power output. The downside was the difficulty in maintaining sufficient cylinder and sleeve lubrication.
Manufacturing was also a major problem.