MATH-341: Linear modelsRegression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
MATH-336: Randomization and causationThis course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.
MATH-413: Statistics for data scienceStatistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
FIN-403: EconometricsThe course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
MATH-131: Probability and statisticsLe cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.