In biology, a colony is composed of two or more conspecific individuals living in close association with, or connected to, one another. This association is usually for mutual benefit such as stronger defense or the ability to attack bigger prey.
Colonies can form in various shapes and ways depending on the organism involved. For instance, the bacterial colony is a cluster of identical cells (clones). These colonies often form and grow on the surface of (or within) a solid medium, usually derived from a single parent cell.
Colonies, in the context of development, may be composed of two or more unitary (or solitary) organisms or be modular organisms. Unitary organisms have determinate development (set life stages) from zygote to adult form and individuals or groups of individuals (colonies) are visually distinct. Modular organisms have indeterminate growth forms (life stages not set) through repeated iteration of genetically identical modules (or individuals), and it can be difficult to distinguish between the colony as a whole and the modules within. In the latter case, modules may have specific functions within the colony.
In contrast, solitary organisms do not associate with colonies; they are ones in which all individuals live independently and have all of the functions needed to survive and reproduce.
Some organisms are primarily independent and form facultative colonies in reply to environmental conditions while others must live in a colony to survive (obligate). For example, some carpenter bees will form colonies when a dominant hierarchy is formed between two or more nest foundresses (facultative colony), while corals are animals that are physically connected by living tissue (the coenosarc) that contains a shared gastrovascular cavity.
Unicellular and multicellular unitary organisms may aggregate to form colonies. For example,
Protists such as slime molds are many unicellular organisms that aggregate to form colonies when food resources are hard to come by, as together they are more reactive to chemical cues released by preferred prey.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. As of 2022, 2.16 million living animal species have been described—of which around 1.05 million are insects, over 85,000 are molluscs, and around 65,000 are vertebrates—but it has been estimated there are around 7.
A fungus (: fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from the other eukaryotic kingdoms, which, by one traditional classification, includes Plantae, Animalia, Protozoa, and Chromista. A characteristic that places fungi in a different kingdom from plants, bacteria, and some protists is chitin in their cell walls.
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary information encoded in genes, which can be transmitted to future generations. Another major theme is evolution, which explains the unity and diversity of life. Energy processing is also important to life as it allows organisms to move, grow, and reproduce.
Social insects, such as ants, termites, and honeybees, have evolved sophisticated societies where the collaborative efforts of "simple" individuals can lead to the emergence of complex dynamics. The reliance of each organism on the collective is so great t ...
Multicellular organisms require very well organized and finely balanced cell-cell communication, adhesion and coordination to ensure the organisms homeostasis. These functions rely on specialized receptors placed at the cells membrane whose binding to thei ...
Eusocial life is characterized by division of labour, collective decision making and self organization, and regarded as the highest form of social organisation in groups. Ants are a model organism for research in collective behavior and the evolution of eu ...