Summary
An electronic effect influences the structure, reactivity, or properties of molecule but is neither a traditional bond nor a steric effect. In organic chemistry, the term stereoelectronic effect is also used to emphasize the relation between the electronic structure and the geometry (stereochemistry) of a molecule. Induction is the redistribution of electron density through a traditional sigma bonded structure according to the electronegativity of the atoms involved. The inductive effect drops across every sigma bond involved limiting its effect to only a few bonds. Conjugation is a redistribution of electron density similar to induction but transmitted through interconnected pi-bonds. Conjugation is not only affected by electronegativity of the connected atoms but also affected by the position of electron lone pairs with respect to the pi-system. Electronic effects can be transmitted throughout a pi-system allowing their influence to extend further than induction. Hyperconjugation is the stabilizing interaction that results from the interaction of the electrons in a sigma bond (usually C-H or C-C) with an adjacent empty (or partially filled) non-bonding p-orbital or antibonding π orbital or an antibonding sigma orbital to give an extended molecular orbital that increases the stability of the system. Hyperconjugation can be used to explain phenomena such as the gauche effect and anomeric effect. Orbital symmetry is important when dealing with orbitals that contain directional components like p and d. An example of such an effect is square planar low-spin d8 transition metal complexes. These complexes exist as square planar complexes due to the directionality of the metal center's d orbitals despite fewer steric congestion in a tetrahedral geometric structure. This is simple one example of many varied examples, including aspects of pericyclic reactions such as the Diels-Alder reaction, among others. Electrostatic interactions include both attractive and repulsive forces associated with the build-up of charge in a molecule.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Protecting Groups in Organic Chemistry
Explores protecting groups in organic chemistry and the electronic nature of aromatic compounds.