Blending inheritance is an obsolete theory in biology from the 19th century. The theory is that the progeny inherits any characteristic as the average of the parents' values of that characteristic. As an example of this, a crossing of a red flower variety with a white variety of the same species would yield pink-flowered offspring.
Charles Darwin's theory of inheritance by pangenesis, with contributions to egg or sperm from every part of the body, implied blending inheritance. His reliance on this mechanism led Fleeming Jenkin to attack Darwin's theory of natural selection on the grounds that blending inheritance would average out any novel beneficial characteristic before selection had time to act.
Blending inheritance was discarded with the general acceptance of particulate inheritance during the development of modern genetics, after 1900.
Charles Darwin developed his theory of evolution by natural selection on the basis of an understanding of uniform processes in geology, acting over very long periods of time on inheritable variation within populations. One of those processes was competition for resources, as Thomas Malthus had indicated, leading to a struggle to survive and to reproduce. Since some individuals would by chance have traits that allowed them to leave more offspring, those traits would tend to increase in the population. Darwin assembled many lines of evidence to show that variation occurred and that artificial selection by animal and plant breeding had caused change. All of this demanded a reliable mechanism of inheritance.
Pangenesis was Darwin's attempt to provide such a mechanism of inheritance. The idea was that each part of the parent's body emitted tiny particles called gemmules, which migrated through the body to contribute to that parent's gametes, their eggs or sperms. The theory had an intuitive appeal, as characteristics of all parts of the body, such as shape of nose, width of shoulders and length of legs are inherited from both the father and the mother. However, it had some serious weaknesses.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Experiments on Plant Hybridization" (German: "Versuche über Pflanzen-Hybriden") is a seminal paper written in 1865 and published in 1866 by Gregor Mendel, an Augustinian friar considered to be the founder of modern genetics. The paper was the result after years spent studying genetic traits in Pisum sativum, the pea plant. In his paper, Mendel compared 7 pairs of discrete traits found in a pea plant: Through experimentation, Mendel discovered that one inheritable trait would invariably be dominant to its recessive alternative.
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary information encoded in genes, which can be transmitted to future generations. Another major theme is evolution, which explains the unity and diversity of life. Energy processing is also important to life as it allows organisms to move, grow, and reproduce.
In biology, the word gene (from γένος, génos; meaning generation or birth or gender) can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function.
Explores the implications of the Luria-Delbrück experiment on evolutionary mechanisms and the importance of probabilities in understanding biological data.
Delves into sexual selection, emphasizing the struggle for reproductive success and the impact of parental investment on mating strategies.
Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experiment ...