Substructural type systemSubstructural type systems are a family of type systems analogous to substructural logics where one or more of the structural rules are absent or only allowed under controlled circumstances. Such systems are useful for constraining access to system resources such as , locks, and memory by keeping track of changes of state that occur and preventing invalid states. Several type systems have emerged by discarding some of the structural rules of exchange, weakening, and contraction: Ordered type systems (discard exchange, weakening and contraction): Every variable is used exactly once in the order it was introduced.
Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
HaskellHaskell (ˈhæskəl) is a general-purpose, statically-typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell has pioneered a number of programming language features such as type classes, which enable type-safe operator overloading, and monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC).
Idris (programming language)Idris is a purely-functional programming language with dependent types, optional lazy evaluation, and features such as a totality checker. Idris may be used as a proof assistant, but is designed to be a general-purpose programming language similar to Haskell. The Idris type system is similar to Agda's, and proofs are similar to Coq's, including tactics (theorem proving functions/procedures) via elaborator reflection. Compared to Agda and Coq, Idris prioritizes management of side effects and support for embedded domain-specific languages.
Monad (functional programming)In functional programming, a monad is a structure that combines program fragments (functions) and wraps their return values in a type with additional computation. In addition to defining a wrapping monadic type, monads define two operators: one to wrap a value in the monad type, and another to compose together functions that output values of the monad type (these are known as monadic functions). General-purpose languages use monads to reduce boilerplate code needed for common operations (such as dealing with undefined values or fallible functions, or encapsulating bookkeeping code).
Scala (programming language)Scala (ˈskɑːlə ) is a strong statically typed high-level general-purpose programming language that supports both object-oriented programming and functional programming. Designed to be concise, many of Scala's design decisions are aimed to address criticisms of Java. Scala source code can be compiled to Java bytecode and run on a Java virtual machine (JVM). Scala can also be compiled to JavaScript to run in a browser, or directly to a native executable.
Clean (programming language)Clean is a general-purpose purely functional computer programming language. It was called the Concurrent Clean System, then the Clean System, later just Clean. Clean has been developed by a group of researchers from the Radboud University in Nijmegen since 1987. The language Clean first appeared in 1987. Although development of the language has slowed, some researchers are still working in the language. In 2018, a spin-off company was founded that uses Clean.
Referential transparencyIn analytic philosophy and computer science, referential transparency and referential opacity are properties of linguistic constructions, and by extension of languages. A linguistic construction is called referentially transparent when for any expression built from it, replacing a subexpression with another one that denotes the same value does not change the value of the expression. Otherwise, it is called referentially opaque.
Side effect (computer science)In computer science, an operation, function or expression is said to have a side effect if it modifies some state variable value(s) outside its local environment, which is to say if it has any observable effect other than its primary effect of returning a value to the invoker of the operation. Example side effects include modifying a non-local variable, modifying a static local variable, modifying a mutable argument passed by reference, performing I/O or calling other functions with side-effects.