Species richness is the number of different species represented in an ecological community, landscape or region. Species richness is simply a count of species, and it does not take into account the abundances of the species or their relative abundance distributions. Species richness is sometimes considered synonymous with species diversity, but the formal metric species diversity takes into account both species richness and species evenness. Depending on the purposes of quantifying species richness, the individuals can be selected in different ways. They can be, for example, trees found in an inventory plot, birds observed from a monitoring point, or beetles collected in a pitfall trap. Once the set of individuals has been defined, its species richness can be exactly quantified, provided the species-level taxonomy of the organisms of interest is well enough known. Applying different species delimitations will lead to different species richness values for the same set of individuals. In practice, people are usually interested in the species richness of areas so large that not all individuals in them can be observed and identified to species. Then applying different sampling methods will lead to different sets of individuals being observed for the same area of interest, and the species richness of each set may be different. When a new individual is added to a set, it may introduce a species that was not yet represented in the set, and thereby increase the species richness of the set. For this reason, sets with many individuals can be expected to contain more species than sets with fewer individuals. If species richness of the obtained sample is taken to represent species richness of the underlying habitat or other larger unit, values are only comparable if sampling efforts are standardised in an appropriate way. Resampling methods can be used to bring samples of different sizes to a common footing. Properties of the sample, especially the number of species only represented by one or a few individuals, can be used to help estimating the species richness in the population from which the sample was drawn.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (12)
HUM-216: Philosophy of biology
Identifier et comprendre les débats et problèmes centraux en philosophie de la biologie, notamment autour de l'évolution biologique et de l'émergence du vivant. Evaluer et comparer les arguments cruci
AR-301(a): Studio BA5 (Viganò)
The Studio explores the evolution of Parisian landscapes facing climate change. Through a deep reading of Paris to identify the various issues linked to the socio-ecological transition and its landsca
AR-401(a): Studio MA1 (Vigano)
The Studio explores the evolution of Parisian landscapes facing climate change. Through a deep reading of Paris to identify the various issues linked to the socio-ecological transition and its landsca
Show more
Related lectures (33)
Water Quality Modelling: Equilibrium Phases
Explores equilibrium phases in water quality modelling, illustrating with examples of mineral precipitation and pH adjustment.
Biodiversity and the Living Planet Index: Global Trends
Covers the Living Planet Index and its role in tracking global biodiversity trends and threats.
Estimation and Analysis of Deviance
Covers estimation of unknown parameters, analyzing model fit, bird prey response, and model diagnostics.
Show more
Related publications (134)

From roots to canopy: Unraveling the influence of species diversity on tree water relations under warmer and drier climates

Eugénie Isabelle Mas

The worsening of drought events with rising air temperature alters tree water relations causing severe hydraulic impairments and widespread forest mortality. Mixing tree species with contrasting hydraulic traits could reduce forest vulnerability to extreme ...
EPFL2024

Ancestral genome reconstruction enhances transposable element annotation by identifying degenerate integrants

Didier Trono, Evaristo Jose Planet Letschert, Wayo Matsushima

Growing evidence indicates that transposable elements (TEs) play important roles in evolution by providing genomes with coding and non-coding sequences. Identification of TE-derived functional elements, however, has relied on TE annotations in individual s ...
2024

Assessing the universality of Habitat Suitability Indexes (HSI) for brown trout (Salmo trutta L.) In relation to ecohydraulic variables

Giovanni De Cesare, Paolo Perona, Giulio Calvani, Francesca Padoan

The Habitat Suitability Index (HSI) is a quantitative index that determines the capacity of a given area to meet habitat requirements for a specific species with respect to given variables. The degree of universality of this index is not well understood ye ...
2024
Show more
Related concepts (6)
Community (ecology)
In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".
Macroecology
Macroecology is the subfield of ecology that deals with the study of relationships between organisms and their environment at large spatial scales to characterise and explain statistical patterns of abundance, distribution and diversity. The term was coined in a small monograph published in Spanish in 1971 by Guillermo Sarmiento and Maximina Monasterio, two Venezuelan researchers working in tropical savanna ecosystems and later used by James Brown of the University of New Mexico and Brian Maurer of Michigan State University in a 1989 paper in Science.
Species
In biology, a species (: species) is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.