Summary
Siliceous ooze is a type of biogenic pelagic sediment located on the deep ocean floor. Siliceous oozes are the least common of the deep sea sediments, and make up approximately 15% of the ocean floor. Oozes are defined as sediments which contain at least 30% skeletal remains of pelagic microorganisms. Siliceous oozes are largely composed of the silica based skeletons of microscopic marine organisms such as diatoms and radiolarians. Other components of siliceous oozes near continental margins may include terrestrially derived silica particles and sponge spicules. Siliceous oozes are composed of skeletons made from opal silica SiO2·nH2O, as opposed to calcareous oozes, which are made from skeletons of calcium carbonate (CaCO3·nH2O) organisms (i.e. coccolithophores). Silica (Si) is a bioessential element and is efficiently recycled in the marine environment through the silica cycle. Distance from land masses, water depth and ocean fertility are all factors that affect the opal silica content in seawater and the presence of siliceous oozes. Siliceous marine organisms, such as diatoms and radiolarians, use silica to form skeletons through a process known as biomineralization. Diatoms and radiolarians have evolved to uptake silica in the form of silicic acid, Si(OH)4. Once an organism has sequestered Si(OH)4 molecules in its cytoplasm, the molecules are transported to silica deposition vesicles where they are transformed into opal silica (B-SiO2). Diatoms and radiolarians have specialized proteins called silicon transporters that prevent mineralization during the sequestration and transportation of silicic acid within the organism. The chemical formula for biological uptake of silicic acid is: H4SiO4(aq) SiO2*nH2O(s) + (2-n)H2O(l) The opal silica saturation state increases with depth in the ocean due to dissolution of sinking opal particles produced in surface ocean waters, but still remains low enough that the reaction to form biogenic opal silica remains thermodynamically unfavorable.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (7)
Numerical Aperture and Resolution: Understanding Microscope Performance
Explores how Numerical Aperture enhances resolution in microscopy, showcasing historical examples and super-resolution microscopy advancements.
Trampoline: Analyzing Vertical Motion of a Mass-Spring System
Discusses the analysis of vertical motion of a mass-spring system.
Show more