A software synthesizer or softsynth is a computer program that generates digital audio, usually for music. Computer software that can create sounds or music is not new, but advances in processing speed now allow softsynths to accomplish the same tasks that previously required the dedicated hardware of a conventional synthesizer. Softsynths may be readily interfaced with other music software such as music sequencers typically in the context of a digital audio workstation. Softsynths are usually less expensive and can be more portable than dedicated hardware.
Synthesizer#Sound synthesis
Softsynths can cover a range of synthesis methods, including subtractive synthesis (including analog modeling, a subtype), FM synthesis (including the similar phase distortion synthesis), physical modelling synthesis, additive synthesis (including the related resynthesis), and sample-based synthesis.
Many popular hardware synthesizers are no longer manufactured but have been emulated in software. The emulation can even extend to having graphics that model the exact placements of the original hardware controls. Some simulators can even import the original sound patches with accuracy that is nearly indistinguishable from the original synthesizer. Popular synthesizers such as the Moog Minimoog, Yamaha DX7, Korg M1, Sequential Prophet-5, Oberheim OB-X, Roland Jupiter 8, ARP 2600 and dozens of other classics have been recreated in software. Software Synth developers such as Arturia offer virtual editions of analog synths like the Minimoog, the ARP 2600, as well as the Yamaha CS-80. Gforce produces a Minimoog with sounds designed by Rick Wakeman and version of the ARP Odyssey.
Some softsynths are sample-based, and frequently have more capability than hardware units, since computers have fewer restrictions on memory than dedicated hardware synthesizers. Sample libraries may be many gigabytes in size. Some are specifically designed to mimic real-world instruments such as pianos. Sample libraries' formats include .wav, .sf or .sf2.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A synthesizer (also spelled synthesiser) is an electronic musical instrument that generates audio signals. Synthesizers typically create sounds by generating waveforms through methods including subtractive synthesis, additive synthesis and frequency modulation synthesis. These sounds may be altered by components such as filters, which cut or boost frequencies; envelopes, which control articulation, or how notes begin and end; and low-frequency oscillators, which modulate parameters such as pitch, volume, or filter characteristics affecting timbre.
A digital audio workstation (DAW) is an electronic device or application software used for recording, editing and producing . DAWs come in a wide variety of configurations from a single software program on a laptop, to an integrated stand-alone unit, all the way to a highly complex configuration of numerous components controlled by a central computer. Regardless of configuration, modern DAWs have a central interface that allows the user to alter and mix multiple recordings and tracks into a final produced piece.
A music sequencer (or audio sequencer or simply sequencer) is a device or application software that can record, edit, or play back music, by handling note and performance information in several forms, typically CV/Gate, MIDI, or Open Sound Control (OSC), and possibly audio and automation data for digital audio workstations (DAWs) and plug-ins. The advent of Musical Instrument Digital Interface (MIDI) and the Atari ST home computer in the 1980s gave programmers the opportunity to design software that could more easily record and play back sequences of notes played or programmed by a musician.
Deep learning models have provided extremely successful methods in most application fields by enabling unprecedented accuracy in various tasks. For audio applications, although the massive complexity of generative models allows handling complex temporal st ...
The growing complexity of digital signal processing applications make a compelling case the use of high-level design and synthesis methodologies for the implementation on reconfigurable and embedded devices. Past research has shown that raising the level o ...
2016
, ,
The growing complexity of digital signal processing applications make a compelling case the use of high-level design and synthesis methodologies for the implementation on programmable logic devices and embedded processors. Past research has shown that, for ...