Concept

Phase-field model

Summary
A phase-field model is a mathematical model for solving interfacial problems. It has mainly been applied to solidification dynamics, but it has also been applied to other situations such as viscous fingering, fracture mechanics, hydrogen embrittlement, and vesicle dynamics. The method substitutes boundary conditions at the interface by a partial differential equation for the evolution of an auxiliary field (the phase field) that takes the role of an order parameter. This phase field takes two distinct values (for instance +1 and −1) in each of the phases, with a smooth change between both values in the zone around the interface, which is then diffuse with a finite width. A discrete location of the interface may be defined as the collection of all points where the phase field takes a certain value (e.g., 0). A phase-field model is usually constructed in such a way that in the limit of an infinitesimal interface width (the so-called sharp interface limit) the correct interfacial
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading