**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Subsurface scattering

Summary

Subsurface scattering (SSS), also known as subsurface light transport (SSLT), is a mechanism of light transport in which light that penetrates the surface of a translucent object is scattered by interacting with the material and exits the surface at a different point. The light will generally penetrate the surface and be reflected a number of times at irregular angles inside the material before passing back out of the material at a different angle than it would have had if it had been reflected directly off the surface. Subsurface scattering is important for realistic 3D computer graphics, being necessary for the rendering of materials such as marble, skin, leaves, wax and milk. If subsurface scattering is not implemented, the material may look unnatural, like plastic or metal.
Rendering techniques
To improve rendering efficiency, many real-time computer graphics algorithms only compute the reflectance at the *surface* of an object. In reality, many materials are slightly

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related units

No results

Related publications (4)

Related people

No results

Loading

Loading

Loading

Related concepts (4)

3D computer graphics

3D computer graphics, sometimes called CGI, 3D-CGI or three-dimensional , are graphics that use a three-dimensional representation of geometric data (often Cartesian) that is stored in the computer fo

Real-time computer graphics

Real-time computer graphics or real-time rendering is the sub-field of computer graphics focused on producing and analyzing images in real time. The term can refer to anything from rendering an app

Shadow mapping

Shadow mapping or shadowing projection is a process by which shadows are added to 3D computer graphics. This concept was introduced by Lance Williams in 1978, in a paper entitled "Casting curved sh

Related courses (2)

CS-341: Introduction to computer graphics

The students study and apply fundamental concepts and algorithms of computer graphics for rendering, geometry synthesis, and animation. They design and implement their own interactive graphics programs.

DH-405: Foundations of digital humanities

This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities circle of processing and interpretation, from data acquisition to new understandings.

Face rendering is a really important topic in Computer Graphics because a lot of virtual simulations or video games contain virtual humans. In order to obtain a realistic face, we need to take care of skin rendering. Nowadays, we can use modern 3D scanning technology to obtain very detailed meshes and textures for the face but the main difficulty with skin rendering is that we need to model subsurface scattering effects. In 2007, d'Eon, Eugene, David Luebke, and Eric Enderton published the article "Efficient Rendering of Human Skin" that describe an algorithm for rendering realistic skin in real-time. The goal of my work was to implement their algorithm to simulate subsurface scattering in skin. I also implemented diffuse environment lighting with occlusions using spherical harmonics.

20113-D geological models are built with data collected in the field such as boreholes, geophysical measurements, pilot shafts or geological mapping. Unfortunately, these data are always limited in number. It implies that geological information is sparse and subsurface models are thus always built of both subjective interpretation and mathematical interpolation/extrapolation techniques. These models are therefore uncertain and this uncertainty is rarely pointed out in a geological prognosis. Our study proposes to bring a new methodology for the evaluation of geological uncertainties related to 3-D subsurface models and to test its potential use. The methodology we propose is based on the 3-D subsurface model, which is here considered as the most probable prediction (notion of best guess). The various geological interfaces that compose the subsurface model are handled individually as Gaussian random fields. At each location of an interface, the random function Z(u) describing the position of this interface is composed of a deterministic part m(u) which represents the expected position, and a random part σ(u)ε(u) which describes fluctuations around the predicted position. Then, a model of spatial variability (a variogram function γ(h)) is proposed in order to condition the random field according to available observations. Several structural constraints, such as the shape of folds and the thickness of layers can also be accounted for in this model. At this point, we are able to estimate the local variance all over the study area by the application of the kriging technique. Finally, the variability is converted into three-dimensional information by calculating probabilities, this describes the occurrence of the various rock masses that are present in the study area. The probabilities are calculated according to intersection rules that govern the stratigraphic sequence of the subsurface model, and they allow us to build a probabilistic model of subsurface structures in the form of a three-dimensional probability field. All of this has been incorporated in a computer program.

Related lectures (2)

Wenzel Alban Jakob, Delio Aleardo Vicini

Subsurface scattering, in which light refracts into a translucent material to interact with its interior, is the dominant mode of light transport in many types of organic materials. Accounting for this phenomenon is thus crucial for visual realism, but explicit simulation of the complex internal scattering process is often too costly. BSSRDF models based on analytic transport solutions are significantly more efficient but impose severe assumptions that are almost always violated, e.g. planar geometry, isotropy, low absorption, and spatio-directional separability. The resulting discrepancies between model and usage lead to objectionable errors in renderings, particularly near geometric features that violate planarity. This article introduces a new shape-adaptive BSSRDF model that retains the efficiency of prior analytic methods while greatly improving overall accuracy. Our approach is based on a conditional variational autoencoder, which learns to sample from a reference distribution produced by a brute-force volumetric path tracer. In contrast to the path tracer, our autoencoder directly samples outgoing locations on the object surface, bypassing a potentially lengthy internal scattering process. The distribution is conditional on both material properties and a set of features characterizing geometric variation in a neighborhood of the incident location. We use a low-order polynomial to model the local geometry as an implicitly defined surface, capturing curvature, thickness, corners, as well as cylindrical and toroidal regions. We present several examples of objects with challenging medium parameters and complex geometry and compare to ground truth simulations and prior work.