Minerotrophic refers to environments that receive nutrients primarily through groundwater that flows through mineral-rich soils or rock, or surface water flowing over land. Minerotrophic, “minerogenous”, and “geogenous” are now often used interchangeably, although the latter two terms refer primarily to hydrological systems, while the former refers to nutrient dynamics. The hydrologic process behind minerotrophic wetlands results in water that has acquired dissolved chemicals which raise the nutrient levels and reduce the acidity. This in turn affects vegetation assemblages and diversity in the wetland in question. If dissolved chemicals include chemical bases such as calcium or magnesium ions, the water is referred to as base-rich and is neutral or alkaline. In contrast to minerotrophic environments, ombrotrophic environments get their water mainly from precipitation, and so are very low in nutrients and more acidic. Of the various wetland types, fens and rich fens are often minerotrophic while poor fens and bogs are often ombrotrophic. Marshes and swamps may also be fed through groundwater sources to a degree.
The hydrological setting of a wetland strongly influences its characteristics. Chemical ions are transported to wetlands via their hydrological system, and in turn affect pH, conductivity, and nutrient levels. Chemical and nutrient dynamics may differ depending on a minerotrophic wetland’s hydrological setting, which could include water discharge dominated, recharge dominated, or some combination of both. These characteristics also vary seasonally, as average groundwater levels increase and decrease at different times of the year. This seasonality can raise water below ground or above the surface to become free standing. Additional factors such as geological conditions, soil type, and surface morphology may also influence the characteristics of a wetland in tandem with hydrological setting.
Stable water and nutrient availability via groundwater systems allows for a diverse array of plant species to grow in minerotrophic wetlands.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We present the results of high-resolution, multi-proxy palaeoecological investigations of two parallel peat cores from the Baltic raised bog Mechacz Wielki in NE Poland. We aim to evaluate the role of regional climate and autogenic processes of the raised ...
Pergamon-Elsevier Science Ltd2017
, ,
Siberian peatlands provide records of past changes in the continental climate of Eurasia. We analyzed a core from Mukhrino mire in western Siberia to reconstruct environmental change in this region over the last 1300 years. The pollen analysis revealed lit ...
Academic Press Inc Elsevier Science2015
Little attention has been paid to how aquatic habitat characteristics affect the traits of plant species. Nuphar lutea (L.) Sm. is a keystone species distributed across temperate regions of Europe, northwest Africa and western Asia. Its apparently low phen ...
A mire, peatland, or quagmire is a wetland area dominated by living peat-forming plants. Mires arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxia. All types of mires share the common characteristic of being saturated with water, at least seasonally with actively forming peat, while having their own ecosystem. Like coral reefs, mires are unusual landforms that derive mostly from biological rather than physical processes, and can take on characteristic shapes and surface patterning.
Ombrotrophic ("cloud-fed"), from Ancient Greek ὄμβρος (ómvros) meaning "rain" and τροφή (trofí) meaning "food"), refers to soils or vegetation which receive all of their water and nutrients from precipitation, rather than from streams or springs. Such environments are hydrologically isolated from the surrounding landscape, and since rain is acidic and very low in nutrients, they are home to organisms tolerant of acidic, low-nutrient environments. The vegetation of ombrotrophic peatlands is often bog, dominated by Sphagnum mosses.
A fen is a type of peat-accumulating wetland fed by mineral-rich ground or surface water. It is one of the main types of wetlands along with marshes, swamps, and bogs. Bogs and fens, both peat-forming ecosystems, are also known as mires. The unique water chemistry of fens is a result of the ground or surface water input. Typically, this input results in higher mineral concentrations and a more basic pH than found in bogs. As peat accumulates in a fen, groundwater input can be reduced or cut off, making the fen ombrotrophic rather than minerotrophic.