Polytope compoundIn geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram. The outer vertices of a compound can be connected to form a convex polyhedron called its convex hull. A compound is a facetting of its convex hull. Another convex polyhedron is formed by the small central space common to all members of the compound. This polyhedron can be used as the core for a set of stellations.
Regular 4-polytopeIn mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Grand stellated 120-cellIn geometry, the grand stellated 120-cell or grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,5,5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is also one of two such polytopes that is self-dual. It has the same edge arrangement as the grand 600-cell, icosahedral 120-cell, and the same face arrangement as the great stellated 120-cell. Due to its self-duality, it does not have a good three-dimensional analogue, but (like all other star polyhedra and polychora) is analogous to the two-dimensional pentagram.
Grand 600-cellIn geometry, the grand 600-cell or grand polytetrahedron is a regular star 4-polytope with Schläfli symbol {3, 3, 5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is the only one with 600 cells. It is one of four regular star 4-polytopes discovered by Ludwig Schläfli. It was named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids.
Icosahedral 120-cellIn geometry, the icosahedral 120-cell, polyicosahedron, faceted 600-cell or icosaplex is a regular star 4-polytope with Schläfli symbol {3,5,5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is constructed by 5 icosahedra around each edge in a pentagrammic figure. The vertex figure is a great dodecahedron. It has the same edge arrangement as the 600-cell, grand 120-cell and great 120-cell, and shares its vertices with all other Schläfli–Hess 4-polytopes except the great grand stellated 120-cell (another stellation of the 120-cell).