Related concepts (4)
Archimedean circle
In geometry, an Archimedean circle is any circle constructed from an arbelos that has the same radius as each of Archimedes' twin circles. If the arbelos is normed such that the diameter of its outer (largest) half circle has a length of 1 and r denotes the radiius of any of the inner half circles, then the radius ρ of such an Archimedean circle is given by There are over fifty different known ways to construct Archimedean circles. An Archimedean circle was first constructed by Archimedes in his Book of Lemmas.
Semicircle
In mathematics (and more specifically geometry), a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180° (equivalently, pi radians, or a half-turn). It has only one line of symmetry (reflection symmetry). In non-technical usage, the term "semicircle" is sometimes used to refer to either a closed curve that also includes the diameter segment from one end of the arc to the other or to the half-disk, which is a two-dimensional geometric region that further includes all the interior points.
Arbelos
In geometry, an arbelos is a plane region bounded by three semicircles with three apexes such that each corner of each semicircle is shared with one of the others (connected), all on the same side of a straight line (the baseline) that contains their diameters. The earliest known reference to this figure is in Archimedes's Book of Lemmas, where some of its mathematical properties are stated as Propositions 4 through 8. The word arbelos is Greek for 'shoemaker's knife'. The figure is closely related to the Pappus chain.
Woo circles
In geometry, the Woo circles, introduced by Peter Y. Woo, are a set of infinitely many Archimedean circles. Form an arbelos with the two inner semicircles tangent at point C. Let m denote any nonnegative real number. Draw two circles, with radii m times the radii of the smaller two arbelos semicircles, centered on the arbelos ground line, also tangent to each other at point C and with radius m times the radius of the corresponding small arbelos arc. Any circle centered on the Schoch line and externally tangent to the circles is a Woo circle.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.