In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint on the statistical occurrence of "coincidences" in a Bell test which is necessarily true if there exist underlying local hidden variables, an assumption that is sometimes termed local realism. In practice, the inequality is routinely violated by modern experiments in quantum mechanics. The usual form of the CHSH inequality is where a and a′ are detector settings on side A, b and b′ on side B, the four combinations being tested in separate subexperiments. The terms E(a, b) etc. are the quantum correlations of the particle pairs, where the quantum correlation is defined to be the expectation value of the product of the "outcomes" of the experiment, i.e. the statistical average of A(a)·B(b), where A and B are the separate outcomes, using the coding +1 for the '+' channel and −1 for the '−' channel. Clauser et al.'s 1969 derivation was oriented towards the use of "two-channel" detectors, and indeed it is for these that it is generally used, but under their method the only possible outcomes were +1 and −1. In order to adapt to real situations, which at the time meant the use of polarised light and single-channel polarisers, they had to interpret '−' as meaning "non-detection in the '+' channel", i.e. either '−' or nothing. They did not in the original article discuss how the two-channel inequality could be applied in real experiments with real imperfect detectors, though it was later proved that the inequality itself was equally valid.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.