In computing, privilege is defined as the delegation of authority to perform security-relevant functions on a computer system. A privilege allows a user to perform an action with security consequences. Examples of various privileges include the ability to create a new user, install software, or change kernel functions.
Users who have been delegated extra levels of control are called privileged. Users who lack most privileges are defined as unprivileged, regular, or normal users.
Privileges can either be automatic, granted, or applied for.
An automatic privilege exists when there is no requirement to have permission to perform an action. For example, on systems where people are required to log into a system to use it, logging out will not require a privilege. Systems that do not implement file protection - such as MS-DOS - essentially give unlimited privilege to perform any action on a file.
A granted privilege exists as a result of presenting some credential to the privilege granting authority. This is usually accomplished by logging on to a system with a username and password, and if the username and password supplied are correct, the user is granted additional privileges.
A privilege is applied for by either an executed program issuing a request for advanced privileges, or by running some program to apply for the additional privileges. An example of a user applying for additional privileges is provided by the sudo command to run a command as superuser (root) user, or by the Kerberos authentication system.
Modern processor architectures have multiple CPU modes that allows the OS to run at different privilege levels. Some processors have two levels (such as user and supervisor); i386+ processors have four levels (#0 with the most, #3 with the least privileges). Tasks are tagged with a privilege level. Resources (segments, pages, ports, etc.) and the privileged instructions are tagged with a demanded privilege level. When a task tries to use a resource, or execute a privileged instruction, the processor determines whether it has the permission (if not, a "protection fault" interrupt is generated).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Memory corruption and type safety flaws dominate the threat landscape. We will approach current research
from three dimensions: sanitization (finding flaws through runtime monitors); fuzzing (testing
The "Introduction to Applied Data Science" (I2ADS) course is aimed at students of all levels to train them in the core computer science software stack and techniques forming the pillars of open & repr
Memory corruption and type safety flaws dominate the threat landscape. We will approach current research from three dimensions: sanitization (finding flaws through runtime monitors); fuzzing (testing
In information security, computer science, and other fields, the principle of least privilege (PoLP), also known as the principle of minimal privilege (PoMP) or the principle of least authority (PoLA), requires that in a particular abstraction layer of a computing environment, every module (such as a process, a user, or a program, depending on the subject) must be able to access only the information and resources that are necessary for its legitimate purpose.
In computer science, hierarchical protection domains, often called protection rings, are mechanisms to protect data and functionality from faults (by improving fault tolerance) and malicious behavior (by providing computer security). Computer operating systems provide different levels of access to resources. A protection ring is one of two or more hierarchical levels or layers of privilege within the architecture of a computer system. This is generally hardware-enforced by some CPU architectures that provide different CPU modes at the hardware or microcode level.
User Account Control (UAC) is a mandatory access control enforcement feature introduced with Microsoft's Windows Vista and Windows Server 2008 operating systems, with a more relaxed version also present in Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows 11. It aims to improve the security of Microsoft Windows by limiting application software to standard user privileges until an administrator authorises an increase or elevation.
Billions of people now have conversations daily over the Internet. A large portion of this communication takes place via secure messaging protocols that offer "end-to-end encryption'" guarantees and resilience to compromise like the widely-used Double Ratc ...
EPFL2024
, ,
Double-fetch bugs are a plague across all major operating system kernels. They occur when data is fetched twice across the user/kernel trust boundary while allowing concurrent modification. Such bugs enable an attacker to illegally access memory, cause den ...
2022
,
In confidential computing, the view of the system software is Manichean: the host operating system is untrusted and the TEE runtime system is fully trusted. However, the runtime system is often as complex as a full operating system, and thus is not free fr ...