In proof theory, the Dialectica interpretation is a proof interpretation of intuitionistic logic (Heyting arithmetic) into a finite type extension of primitive recursive arithmetic, the so-called System T. It was developed by Kurt Gödel to provide a consistency proof of arithmetic. The name of the interpretation comes from the journal Dialectica, where Gödel's paper was published in a 1958 special issue dedicated to Paul Bernays on his 70th birthday.
Via the Gödel–Gentzen negative translation, the consistency of classical Peano arithmetic had already been reduced to the consistency of intuitionistic Heyting arithmetic. Gödel's motivation for developing the dialectica interpretation was to obtain a relative consistency proof for Heyting arithmetic (and hence for Peano arithmetic).
Logic translation
The interpretation has two components: a formula translation and a proof translation. The formula translation describes how each formula of Heyting arithmetic is mapped to a quantifier-free formula of the system T, where and are tuples of fresh variables (not appearing free in ). Intuitively, is interpreted as . The proof translation shows how a proof of has enough information to witness the interpretation of , i.e. the proof of can be converted into a closed term and a proof of in the system T.
The quantifier-free formula is defined inductively on the logical structure of as follows, where is an atomic formula:
The formula interpretation is such that whenever is provable in Heyting arithmetic then there exists a sequence of closed terms such that is provable in the system T. The sequence of terms and the proof of are constructed from the given proof of in Heyting arithmetic. The construction of is quite straightforward, except for the contraction axiom which requires the assumption that quantifier-free formulas are decidable.
It has also been shown that Heyting arithmetic extended with the following principles
Axiom of choice
Markov's principle
Independence of premise for universal formulas
is necessary and sufficient for characterising the formulas of HA which are interpretable by the Dialectica interpretation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematical logic, realizability is a collection of methods in proof theory used to study constructive proofs and extract additional information from them. Formulas from a formal theory are "realized" by objects, known as "realizers", in a way that knowledge of the realizer gives knowledge about the truth of the formula. There are many variations of realizability; exactly which class of formulas is studied and which objects are realizers differ from one variation to another.
Primitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician , as a formalization of his finitistic conception of the foundations of arithmetic, and it is widely agreed that all reasoning of PRA is finitistic. Many also believe that all of finitism is captured by PRA, but others believe finitism can be extended to forms of recursion beyond primitive recursion, up to ε0, which is the proof-theoretic ordinal of Peano arithmetic.
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it. Heyting arithmetic can be characterized just like the first-order theory of Peano arithmetic , except that it uses the intuitionistic predicate calculus for inference. In particular, this means that the double-negation elimination principle, as well as the principle of the excluded middle , do not hold.
The task of discovering equivalent entities in knowledge graphs (KGs), so-called KG entity alignment, has drawn much attention to overcome the incompleteness problem of KGs. The majority of existing techniques learns the pointwise representations of entiti ...
We consider several "provably secure" hash functions that compute simple sums in a well chosen group (G,*). Security properties of such functions provably translate in a natural way to computational problems in G that are simple to define and possibly also ...