Concept

Modal algebra

In algebra and logic, a modal algebra is a structure such that is a Boolean algebra, is a unary operation on A satisfying and for all x, y in A. Modal algebras provide models of propositional modal logics in the same way as Boolean algebras are models of classical logic. In particular, the variety of all modal algebras is the equivalent algebraic semantics of the modal logic K in the sense of abstract algebraic logic, and the lattice of its subvarieties is dually isomorphic to the lattice of normal modal logics. Stone's representation theorem can be generalized to the Jónsson–Tarski duality, which ensures that each modal algebra can be represented as the algebra of admissible sets in a modal general frame. A Magari algebra (or diagonalizable algebra) is a modal algebra satisfying . Magari algebras correspond to provability logic.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.