Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Emphasizes the significance of careful cross-validation in deep neural networks, including the split of data and the concept of K-fold cross-validation.
Covers the stochastic properties of time series, stationarity, autocovariance, special stochastic processes, spectral density, digital filters, estimation techniques, model checking, forecasting, and advanced models.
Explores advanced optimization techniques for machine learning models, focusing on adaptive gradient methods and their applications in non-convex optimization problems.