Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Within the HMM state mapping-based cross-lingual speaker adaptation framework, the minimum Kullback-Leibler divergence criterion has been typically employed to measure the similarity of two average voice state distributions from two respective languages fo ...
Standard hidden Markov model (HMM) based automatic speech recognition (ASR) systems use phonemes as subword units. Thus, development of ASR system for a new language or domain depends upon the availability of a phoneme lexicon in the target language. In th ...
Within the HMM state mapping-based cross-lingual speaker adaptation framework, the minimum Kullback-Leibler divergence criterion has been typically employed to measure the similarity of two average voice state distributions from two respective languages fo ...
State-of-the-art Automatic Speech Recognition (ASR) systems typically use phoneme as the subword units. In this paper, we investigate a system where the word models are defined in-terms of two different subword units, i.e., phonemes and graphemes. We train ...
In recent literature, different approaches have been proposed to use graphemes as subword units with implicit source of phoneme information for automatic speech recognition. The major advantage of using graphemes as subword units is that the definition of ...
State-of-the-art Automatic Speech Recognition (ASR) systems typically use phoneme as the subword units. In this paper, we investigate a system where the word models are defined in-terms of two different subword units, i.e., phonemes and graphemes. We train ...
The state-of-the-art automatic speech recognition (ASR) systems typically use phonemes as subword units. In this work, we present a novel grapheme-based ASR system that jointly models phoneme and grapheme information using Kullback-Leibler divergence-based ...
There is growing interest in using graphemes as subword units, especially in the context of the rapid development of hidden Markov model (HMM) based automatic speech recognition (ASR) system, as it eliminates the need to build a phoneme pronunciation lexic ...