The oxygen-evolving complex (OEC), also known as the water-splitting complex, is a water-oxidizing enzyme involved in the photo-oxidation of water during the light reactions of photosynthesis. OEC is surrounded by 4 core proteins of photosystem II at the membrane-lumen interface. The mechanism for splitting water involves absorption of three photons before the fourth provides sufficient energy for water oxidation. Based on a widely accepted theory from 1970 by Kok, the complex can exist in 5 states: S0 to S4. S4 being the most oxidized and S0 the most reduced. Photons trapped by photosystem II move the system from state S0 to S4. S4 is unstable and reacts with water producing free oxygen. For the complex to reset to the lowest state, S0, it uses 2 water molecules to pull out 4 electrons.
The OEC active site contains a cluster of manganese and calcium, with the formula Mn4Ca1OxCl1–2(HCO3)y. This cluster is coordinated by D1 and CP43 subunits and stabilized by peripheral membrane proteins. Other characteristics of it have been reviewed.
Currently, the mechanism of the complex is not completely understood. Along with the role of Ca+2, Cl−1, and the membrane proteins surrounding the metal cluster not being well understood. Much of what is known has been collected from flash photolysis experiments, electron paramagnetic resonance (EPR), and X-ray spectroscopy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Oxygen evolution is the process of generating molecular oxygen (O2) by a chemical reaction, usually from water. Oxygen evolution from water is effected by oxygenic photosynthesis, electrolysis of water, and thermal decomposition of various oxides. The biological process supports aerobic life. When relatively pure oxygen is required industrially, it is isolated by distilling liquefied air. Oxygen evolving complex Photosynthetic oxygen evolution is the fundamental process by which oxygen is generated in the earth's biosphere.
Light-dependent reactions is jargon for certain photochemical reactions that are involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions, the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI), PSII absorbs a photon to produce a so-called high energy electron which transfers via an electron transport chain to cytochrome b_6f and then to PSI. The then-reduced PSI, absorbs another photon producing a more highly reducing electron, which converts NADP^+ to NADPH.
Thylakoids are membrane-bound compartments inside chloroplasts and cyanobacteria. They are the site of the light-dependent reactions of photosynthesis. Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thylakoids frequently form stacks of disks referred to as grana (singular: granum). Grana are connected by intergranal or stromal thylakoids, which join granum stacks together as a single functional compartment. In thylakoid membranes, chlorophyll pigments are found in packets called quantasomes.
Polymeric semiconductors have gained significant attention in the field of organic electronics due to their unique properties and potential applications. Through their ability to transport charge carriers and to absorb or emit light, they have attracted mu ...
Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...
The surface wettability of catalysts is typically controlled via surface treatments that promote catalytic performance. Here we report on potential-regulated hydrophobicity/hydrophilicity at cobalt-based oxide interfaces with an alkaline solution. The swit ...