Producer gas is fuel gas that is manufactured by blowing through a coke or coal fire with air and steam simultaneously. It mainly consists of carbon monoxide (CO), hydrogen (H2), as well as substantial amounts of nitrogen (N2). The caloric value of the producer gas is low (mainly because of its high nitrogen content), and the technology is obsolete. Improvements over producer gas, also obsolete, include water gas where the solid fuel is treated intermittently with air and steam and, far more efficiently synthesis gas where the solid fuel is replaced with methane. In the USA, producer gas may also be referred to by other names based on the fuel used for production such as wood gas. Producer gas may also be referred to as suction gas. The term suction refers to the way the air was drawn into the gas generator by an internal combustion engine. Wood gas is produced in a gasifier Producer gas is generally made from coke, or other carbonaceous material such as anthracite. Air is passed over the red-hot carbonaceous fuel and carbon monoxide is produced. The reaction is exothermic and proceeds as follows: Formation of producer gas from air and carbon: C + O_2 → CO_2, +97,600 calories/mol CO_2 + C → 2CO, –38,800 calories/mol (mol of the reaction formula) 2C + O_2 → 2CO, +58,800 calories/mol (per mol of O_2 i.e. per mol of the reaction formula) Reactions between steam and carbon: H_2O + C → H_2 + CO, –28,800 calories/mol (presumably mol of the reaction formula) 2H_2O + C → 2H_2 + CO_2, –18,800 calories/mol (presumably mol of the reaction formula) Reaction between steam and carbon monoxide: H_2O + CO → CO_2 + H_2, +10,000 calories/mol (presumably mol of the reaction formula) CO_2 + H_2 → CO + H_2O, –10,000 calories/mol (presumably mol of the reaction formula) The average composition of ordinary producer gas according to Latta was: CO_2: 5.8%; O_2: 1.3%; CO: 19.8%; H_2: 15.1%; CH_4: 1.3%; N_2: 56.7%; B.T.U. gross per cu.ft 136 The concentration of carbon monoxide in the "ideal" producer gas was considered to be 34.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (33)
Related concepts (10)
Gasification
Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed.
Coal gas
Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system. It is produced when coal is heated strongly in the absence of air. Town gas is a more general term referring to manufactured gaseous fuels produced for sale to consumers and municipalities. The original coal gas was produced by the coal gasification reaction, and thus the burnable component consisted of mixture of carbon monoxide and hydrogen in roughly equal quantities by volume. Thus, coal gas is highly toxic.
Water gas
Water gas is a kind of fuel gas, a mixture of carbon monoxide and hydrogen. It is produced by "alternately hot blowing a fuel layer [coke] with air and gasifying it with steam". The caloric yield of this is about 10% of a modern syngas plant. Further making this technology unattractive, its precursor coke is expensive, whereas syngas uses cheaper precursor, mainly methane from natural gas. Synthesis gas is made by passing steam over a red-hot carbon fuel such as coke: (ΔH = +131 kJ/mol) The reaction is endothermic, so the fuel must be continually re-heated to maintain the reaction.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.