An isocyanide (also called isonitrile or carbylamine) is an organic compound with the functional group –. It is the isomer of the related nitrile (–C≡N), hence the prefix is isocyano. The organic fragment is connected to the isocyanide group through the nitrogen atom, not via the carbon. They are used as building blocks for the synthesis of other compounds.
The C-N distance in isocyanides is 115.8 pm in methyl isocyanide. The C-N-C angles are near 180°.
Akin to carbon monoxide, isocyanides are described by two resonance structures, one with a triple bond between the nitrogen and the carbon and one with a double bond between. The π lone pair of the nitrogen stabilizes the structure and is responsible of the linearity of isocyanides, although the reactivity of isocyanides reflects some carbene character, at least in a formal sense. Thus, both resonance structures are useful representations. They are susceptible to polymerization.
Isocyanides exhibit a strong absorption in their IR spectra in the range of 2165–2110 cm−1.
The electronic symmetry about the isocyanide 14N nucleus results in a slow quadrupolar relaxation so that 13C-14N nuclear spin coupling can be observed, with coupling constants of ca. 5 Hz for the isocyanide 13C nucleus and 5–14 Hz for the 13C nucleus which the isocyanide group is attached to.
Isocyanides have a very disagreeable odour. To quote from Lieke, "Es besitzt einen penetranten, höchst unangenehmen Geruch; das Oeffnen eines Gefässes mit Cyanallyl reicht hin, die Luft eines Zimmers mehrere Tage lang zu verpesten, ..." (It has a penetrating, extremely unpleasant odour; the opening of a flask of allyl [iso]cyanide is enough to foul up the air in a room for several days). Note that in Lieke's day, the difference between isocyanide and nitrile was not fully appreciated.
Ivar Karl Ugi states that "The development of the chemistry of isocyanides has probably suffered only little delay through the characteristic odor of volatile isonitriles, which has been described by Hofmann and Gautier as 'highly specific, almost overpowering', 'horrible', and 'extremely distressing'.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.
In organic chemistry, isocyanate is the functional group with the formula . Organic compounds that contain an isocyanate group are referred to as isocyanates. An organic compound with two isocyanate groups is known as a diisocyanate. Diisocyanates are manufactured for the production of polyurethanes, a class of polymers. Isocyanates should not be confused with cyanate esters and isocyanides, very different families of compounds. The cyanate (cyanate ester) functional group () is arranged differently from the isocyanate group ().
A triple bond in chemistry is a chemical bond between two atoms involving six bonding electrons instead of the usual two in a covalent single bond. Triple bonds are stronger than the equivalent single bonds or double bonds, with a bond order of three. The most common triple bond is in a nitrogen N2 molecule; the second most common is that between two carbon atoms, which can be found in alkynes. Other functional groups containing a triple bond are cyanides and isocyanides.
Covers various catalytic asymmetric reactions in organic chemistry, including Lewis and Brønsted acids activation, Jacobsen Urea Catalyst, and Mannick Reaction.
The head-to-tail dimerization of N-heterocyclic diazoolefins is described. The products of these formal (3+3) cycloaddition reactions are strongly reducing quinoidal tetrazines. Oxidation of the tetrazines occurs in a stepwise fashion, and we were able to ...
In the first chapter of this thesis, the macrocyclization of a new type of bifunctional substrates, omega-isocyanoaldehyde derivatives, is described. Ten different omega-isocyanoaldehydes in terms of different ring sizes and functional groups were prepared ...
Ferrate (Fe(VI)), a promising water treatment oxidant, can be used for micropollutant abatement or disinfection byproduct mitigation. However, knowledge gaps remain concerning the interaction between Fe(VI) and dissolved organic matter structures, notably ...