Eventual consistency is a consistency model used in distributed computing to achieve high availability that informally guarantees that, if no new updates are made to a given data item, eventually all accesses to that item will return the last updated value. Eventual consistency, also called optimistic replication, is widely deployed in distributed systems and has origins in early mobile computing projects. A system that has achieved eventual consistency is often said to have converged, or achieved replica convergence. Eventual consistency is a weak guarantee – most stronger models, like linearizability, are trivially eventually consistent. Eventually-consistent services are often classified as providing BASE semantics (basically-available, soft-state, eventual consistency), in contrast to traditional ACID (atomicity, consistency, isolation, durability). In chemistry, a base is the opposite of an acid, which helps in remembering the acronym. According to the same resource, these are the rough definitions of each term in BASE: Basically available: reading and writing operations are available as much as possible (using all nodes of a database cluster), but might not be consistent (the write might not persist after conflicts are reconciled, and the read might not get the latest write) Soft-state: without consistency guarantees, after some amount of time, we only have some probability of knowing the state, since it might not yet have converged Eventually consistent: If we execute some writes and then the system functions long enough, we can know the state of the data; any further reads of that data item will return the same value Eventual consistency is sometimes criticized as increasing the complexity of distributed software applications. This is partly because eventual consistency is purely a liveness guarantee (reads eventually return the same value) and does not guarantee safety: an eventually consistent system can return any value before it converges. In order to ensure replica convergence, a system must reconcile differences between multiple copies of distributed data.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (6)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.