Phosphorus trichloride is an inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts readily with water to release hydrogen chloride.
Phosphorus trichloride was first prepared in 1808 by the French chemists Joseph Louis Gay-Lussac and Louis Jacques Thénard by heating calomel (Hg2Cl2) with phosphorus. Later during the same year, the English chemist Humphry Davy produced phosphorus trichloride by burning phosphorus in chlorine gas.
World production exceeds one-third of a million tonnes. Phosphorus trichloride is prepared industrially by the reaction of chlorine with white phosphorus, using phosphorus trichloride as the solvent. In this continuous process PCl3 is removed as it is formed in order to avoid the formation of PCl5.
P4 + 6 Cl2 → 4 PCl3
It has a trigonal pyramidal shape. Its 31P NMR spectrum exhibits a singlet around +220 ppm with reference to a phosphoric acid standard.
The phosphorus in PCl3 is often considered to have the +3 oxidation state and the chlorine atoms are considered to be in the −1 oxidation state. Most of its reactivity is consistent with this description.
PCl3 is a precursor to other phosphorus compounds, undergoing oxidation to phosphorus pentachloride (PCl5), thiophosphoryl chloride (PSCl3), or phosphorus oxychloride (POCl3).
PCl3 reacts vigorously with water to form phosphorous acid (H3PO3) and hydrochloric acid:
PCl3 + 3 H2O → H3PO3 + 3 HCl
Phosphorus trichloride is the precursor to organophosphorus compounds. It reacts with phenol to give triphenyl phosphite:
Alcohols such as ethanol react similarly in the presence of a base such as a tertiary amine:
With one equivalent of alcohol and in the absence of base, the first product is alkoxyphosphorodichloridite:
In the absence of base, however, with excess alcohol, phosphorus trichloride converts to diethylphosphite:
PCl3 + 3 EtOH → (EtO)2P(O)H + 2 HCl + EtCl
Secondary amines (R2NH) form aminophosphines.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents. Phosphorus, like nitrogen, is in group 15 of the periodic table, and thus phosphorus compounds and nitrogen compounds have many similar properties.
In chemistry, the term phosphonium (more obscurely: phosphinium) describes polyatomic cations with the chemical formula PR4+ (where R is a hydrogen or an alkyl, aryl, or halide group). These cations have tetrahedral structures. The salts are generally colorless or take the color of the anions. The parent phosphonium is PH4+ as found in the iodide salt, phosphonium iodide.
Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is widely used in the synthesis of organic and organometallic compounds. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether. Triphenylphosphine can be prepared in the laboratory by treatment of phosphorus trichloride with phenylmagnesium bromide or phenyllithium.
This course on homogeneous catalysis provide a detailed understanding of how these catalysts work at a mechanistic level and give examples of catalyst design for important reactions (hydrogenation, ol
The development of new catalytic methods for organic synthesis is a critical endeavour in order to obviate the economic and ecological drawbacks of stoichiometric organic synthesis. While catalysis can offer significant advantages in terms of atom-economy, ...
Controlling phosphorus is fundamental to limit the risk of eutrophication of continental aquatic ecosystems. Integrated modelling of its concentration in the aquatic continuum requires specific tools for water bodies. However, although simple static empiri ...
Explores the properties and applications of copper alloys, including conductivity, stability, structural hardening, and the characteristics of bronzes and brasses.
Polyfluoroarenes are an important class of compounds in medical and material chemistry. The synthesis of alkylated polyfluoroarenes remains challenging. Here we describe a decarboxylative coupling reaction of N-hydroxyphthalimide esters of aliphatic carbox ...