Related courses (22)
MSE-431: Physical chemistry of polymeric materials
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
PHYS-441: Statistical physics of biomacromolecules
Introduction to the application of the notions and methods of theoretical physics to problems in biology.
CH-424: Supramolecular chemistry
The course provides an introduction to supramolecular chemistry. In addition, current trends are discussed using recent publications in this area.
BIO-467: Scientific literature analysis in bioengineering
Students are given the means to dig effectively into modern scientific literature in the multidisciplinary field of bioengineering. The method relies on granting sufficient time to become familiar wi
EE-517: Bio-nano-chip design
Introduction to heterogeneous integration for Nano-Bio-CMOS sensors on Chip. Understanding and designing of active Bio/CMOS interfaces powered by nanostructures.
CH-312: Dynamics of biomolecular processes
In this course we will discuss advanced biophysical topics, building on the framework established in the course "Macromolecular structure and interactions". The course is held in English.
BIO-622: Practical - Lingner Lab
Telomere biology. The students will obtain theoretical and practical insight into telomere biology and the roles of telomeres during cellular senescence and for genome stability.
BIO-244: Physics of the cell
Living organisms evolve in a physical world: their cells respond to mechanics, electricity and light. In this course, we will describe the behavior and function of cells using physical principles.
BIOENG-455: Computational cell biology
Computer modelling is increasingly used to study dynamic phenomena in cell biology. This course shows how to identify common mathematical features in cell biological mechanisms, and become proficient
CH-413: Nanobiotechnology
This course concerns modern bioanalytical techniques to investigate biomolecules both in vitro and in vivo, including recent methods to image, track and manipulate single molecules. We cover the basic

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.