The glycine receptor (abbreviated as GlyR or GLR) is the receptor of the amino acid neurotransmitter glycine. GlyR is an ionotropic receptor that produces its effects through chloride current. It is one of the most widely distributed inhibitory receptors in the central nervous system and has important roles in a variety of physiological processes, especially in mediating inhibitory neurotransmission in the spinal cord and brainstem.
The receptor can be activated by a range of simple amino acids including glycine, β-alanine and taurine, and can be selectively blocked by the high-affinity competitive antagonist strychnine. Caffeine is a competitive antagonist of GlyR. Cannabinoids enhance the function.
The protein Gephyrin has been shown to be necessary for GlyR clustering at inhibitory synapses. GlyR is known to colocalize with the GABAA receptor on some hippocampal neurons. Nevertheless, some exceptions can occur in the central nervous system where the GlyR α1 subunit and gephyrin, its anchoring protein, are not found in dorsal root ganglion neurons despite the presence of GABAA receptors.
Glycine and its receptor were first suggested to play a role in inhibition of cells in 1965. Two years later, experiments showed that glycine had a hyperpolarizing effect on spinal motor neurons due to increased chloride conductance through the receptor. Then, in 1971, glycine was found to be localized in the spinal cord using autoradiography. All of these discoveries resulted in the conclusion that glycine is a primary inhibitory neurotransmitter of the spinal cord that works via its receptor.
Strychnine-sensitive GlyRs are members of a family of ligand-gated ion channels. Receptors of this family are arranged as five subunits surrounding a central pore, with each subunit composed of four α helical transmembrane segments. There are presently four known isoforms of the ligand-binding α-subunit (α1-4) of GlyR (GLRA1, GLRA2, GLRA3, GLRA4) and a single β-subunit (GLRB).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the student to the fudamentals of pharmacology, pharmacokinetics and drug-receptor interactions. It discusses also pharmacogenetics and chronopharmacology, to exemplify the chal
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
Barbiturates are a class of depressant drugs that are chemically derived from barbituric acid. They are effective when used medically as anxiolytics, hypnotics, and anticonvulsants, but have physical and psychological addiction potential as well as overdose potential among other possible adverse effects. They have been used recreationally for their anti-anxiety and sedative effects, and are thus controlled in most countries due to the risks associated with such use.
Strychnine (ˈstrɪkniːn,_-nɪn, , US chiefly -naɪn ) is a highly toxic, colorless, bitter, crystalline alkaloid used as a pesticide, particularly for killing small vertebrates such as birds and rodents. Strychnine, when inhaled, swallowed, or absorbed through the eyes or mouth, causes poisoning which results in muscular convulsions and eventually death through asphyxia. While it is no longer used medicinally, it was used historically in small doses to strengthen muscle contractions, such as a heart and bowel stimulant and performance-enhancing drug.
Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in response to the binding of a chemical messenger (i.e. a ligand), such as a neurotransmitter. When a presynaptic neuron is excited, it releases a neurotransmitter from vesicles into the synaptic cleft. The neurotransmitter then binds to receptors located on the postsynaptic neuron.
Magnetic resonance spectroscopy (MRS) is the only technique that can detect endogenous metabolites directly and non-invasively in vivo. It allows to identify different metabolites and analyze the dynamic neurochemical processes in the brain, skeletal muscl ...
EPFL2023
Stroke is the main source of long-lasting disability, affecting dominantly motor functions. The extent and course of recovery are highly heterogeneous between patients, with a minority of patients fully recovering from their initial impairments, leaving 85 ...
We performed magnetic resonance spectroscopy (MRS) on healthy individuals with tinnitus and no hearing loss (n = 16) vs. a matched control group (n = 17) to further elucidate the role of excitatory and inhibitory neurotransmitters in tinnitus. Two-dimensio ...