Related courses (10)
MATH-442: Statistical theory
-This course gives a mostly rigourous treatment of some statistical methods outside the context of standard likelihood theory.
CS-433: Machine learning
Machine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
MGT-502: Data science and machine learning
Hands-on introduction to data science and machine learning. We explore recommender systems, generative AI, chatbots, graphs, as well as regression, classification, clustering, dimensionality reduction
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
ME-390: Foundations of artificial intelligence
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
EE-311: Fundamentals of machine learning
Ce cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
MATH-435: Bayesian Computation
This course aims at giving a broad overview of Bayesian inference, highlighting how the basic Bayesian paradigm proceeds, and the various methods that can be used to deal with the computational issues
MGT-492: Data science and machine learning I
This class provides a hands-on introduction to data science and machine learning topics, exploring areas such as data acquisition and cleaning, regression, classification, clustering, neural networks,

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.