Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P). During its journey to the comet, the spacecraft performed flybys of Earth, Mars, and the asteroids 21 Lutetia and 2867 Šteins. It was launched as the third cornerstone mission of the ESA's Horizon 2000 programme, after SOHOCluster and XMM-Newton.
On 6 August 2014, the spacecraft reached the comet and performed a series of manoeuvers to eventually orbit the comet at distances of . On 12 November, its lander module Philae performed the first successful landing on a comet, though its battery power ran out two days later. Communications with Philae were briefly restored in June and July 2015, but due to diminishing solar power, Rosetta communications module with the lander was turned off on 27 July 2016. On 30 September 2016, the Rosetta spacecraft ended its mission by hard-landing on the comet in its Ma'at region.
The probe was named after the Rosetta Stone, a stele of Egyptian origin featuring a decree in three scripts. The lander was named after the Philae obelisk, which bears a bilingual Greek and Egyptian hieroglyphic inscription.
Rosetta was launched on 2 March 2004 from the Guiana Space Centre in Kourou, French Guiana, on an Ariane 5 rocket and reached Comet Churyumov–Gerasimenko on 7 May 2014. It performed a series of manoeuvres to enter orbit between then and 6 August 2014, when it became the first spacecraft to orbit a comet. (Previous missions had conducted successful flybys of seven other comets.) It was one of ESA's Horizon 2000 cornerstone missions. The spacecraft consisted of the Rosetta orbiter, which featured 12 instruments, and the Philae lander, with nine additional instruments. The Rosetta mission orbited Comet Churyumov–Gerasimenko for 17 months and was designed to complete the most detailed study of a comet ever attempted. The spacecraft was controlled from the European Space Operations Centre (ESOC), in Darmstadt, Germany.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The main objective of this course is to teach the students the fundamentals of concurrent engineering for space missions and systems. The course is built around a similar framework to that of the Euro
Ce cours décrit de façon simple les processus physiques qui expliquent l'univers dans lequel nous vivons. En couvrant une large gamme de sujets, le but du cours est aussi de donner un aperçu général d
The objective of the course is to present with different viewpoints, the lessons learned which lead to the decisions in the space exploration and their consequences today and for the decades to come.
New Horizons is an interplanetary space probe that was launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institute (SwRI), with a team led by Alan Stern, the spacecraft was launched in 2006 with the primary mission to perform a flyby study of the Pluto system in 2015, and a secondary mission to fly by and study one or more other Kuiper belt objects (KBOs) in the decade to follow, which became a mission to 486958 Arrokoth.
Stardust was a 385-kilogram robotic space probe launched by NASA on 7 February 1999. Its primary mission was to collect dust samples from the coma of comet Wild 2, as well as samples of cosmic dust, and return them to Earth for analysis. It was the first sample return mission of its kind. En route to comet Wild 2, it also flew by and studied the asteroid 5535 Annefrank. The primary mission was successfully completed on 15 January 2006 when the sample return capsule returned to Earth.
Cosmic dust - also called extraterrestrial dust, space dust, or star dust - is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust (as in the zodiacal cloud), and circumplanetary dust (as in a planetary ring). There are several methods to obtain space dust measurement.
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Learn about the physical phenomena at play in astronomical objects and link theoretical predictions to observations.
From the recent awareness of the booming number of space debris and their derived worldwide re-entry event threat originating from the use of high survivability components, complementary mitigation measures must be taken for future orbital elements. In thi ...
The challenge of power exhaust of the high heat and particle fluxes foreseen for ITER and the forthcoming nuclear fusion reactors can be mitigated by operating in a detached divertor regime.This regime has been the object of three decades of studies, as it ...
EPFL2023
The plasma environment at a comet can be divided into different regions with distinct plasma characteristics. Two such regions are the solar wind ion cavity, which refers to the part of the outer coma that does not contain any solar wind ions anymore; and ...