Concept

Fairchild Semiconductor

Summary
Fairchild Semiconductor International, Inc. was an American semiconductor company based in San Jose, California. Founded in 1957 as a division of Fairchild Camera and Instrument, it became a pioneer in the manufacturing of transistors and of integrated circuits. Schlumberger bought the firm in 1979 and sold it to National Semiconductor in 1987; Fairchild was spun off as an independent company again in 1997. In September 2016, Fairchild was acquired by ON Semiconductor. The company had locations in the United States at San Jose, California; San Rafael, California; South Portland, Maine; West Jordan, Utah; and Mountaintop, Pennsylvania. Outside the US, it operated locations in Australia; Singapore; Bucheon, South Korea; Penang, Malaysia; Suzhou, China; and Cebu, Philippines, among others. In 1955, William Shockley founded Shockley Semiconductor Laboratory, funded by Beckman Instruments in Mountain View, California; his plan was to develop a new type of "4-layer diode" that would work faster and have more uses than then-current transistors. At first he attempted to hire some of his former colleagues from Bell Labs, but none were willing to move to the West Coast or work with Shockley again at that time. Shockley then founded the core of the new company with what he considered the best and brightest graduates coming out of American engineering schools. While Shockley was effective as a recruiter, he was less effective as a manager. A core group of Shockley employees, later known as the traitorous eight, became unhappy with his management of the company. The eight men were Julius Blank, Victor Grinich, Jean Hoerni, Eugene Kleiner, Jay Last, Gordon Moore, Robert Noyce, and Sheldon Roberts. Looking for funding on their own project, they turned to Sherman Fairchild's Fairchild Camera and Instrument, an Eastern U.S. company with considerable military contracts. In 1957 the Fairchild Semiconductor division was started with plans to make silicon transistors at a time when germanium was still the most common material for semiconductor use.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.