In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
More specifically, differential algebra refers to the theory introduced by Joseph Ritt in 1950, in which differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with finitely many derivations.
A natural example of a differential field is the field of rational functions in one variable over the complex numbers, where the derivation is differentiation with respect to More generally, every differential equation may be viewed as an element of a differential algebra over the differential field generated by the (known) functions appearing in the equation.
Joseph Ritt developed differential algebra because he viewed attempts to reduce systems of differential equations to various canonical forms as an unsatisfactory approach. However, the success of algebraic elimination methods and algebraic manifold theory motivated Ritt to consider a similar approach for differential equations. His efforts led to an initial paper Manifolds Of Functions Defined By Systems Of Algebraic Differential Equations and 2 books, Differential Equations From The Algebraic Standpoint and Differential Algebra. Ellis Kolchin, Ritt's student, advanced this field and published Differential Algebra And Algebraic Groups.
A derivation on a ring is a function
such that
and
(Leibniz product rule),
for every and in
A derivation is linear over the integers since these identities imply and
A differential ring is a commutative ring equipped with one or more derivations that commute pairwise; that is, for every pair of derivations and every When there is only one derivation one talks often of an ordinary differential ring; otherwise, one talks of a partial differential ring.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.
In mathematics, a derivation is a function on an algebra which generalizes certain features of the derivative operator. Specifically, given an algebra A over a ring or a field K, a K-derivation is a K-linear map D : A → A that satisfies Leibniz's law: More generally, if M is an A-bimodule, a K-linear map D : A → M that satisfies the Leibniz law is also called a derivation. The collection of all K-derivations of A to itself is denoted by DerK(A). The collection of K-derivations of A into an A-module M is denoted by DerK(A, M).
Algebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
Let T be a measure-preserving Zℓ-action on the probability space (X,B,μ), let q1,…,qm:R→Rℓ be vector polynomials, and let f0,…,fm∈L∞(X). For any ϵ>0 and multicorrelation sequences of the form α(n)=∫Xf0⋅T⌊q1(n)⌋f1⋯T⌊qm(n)⌋fmdμ we show that there exis ...
2021
, , ,
We propose nonparametric estimators for the second-order central moments of possibly anisotropic spherical random fields, within a functional data analysis context. We consider a measurement framework where each random field among an identically distribute ...
We consider nonlinear parabolic stochastic PDEs on a bounded Lipschitz domain driven by a Gaussian noise that is white in time and colored in space, with Dirichlet or Neumann boundary condition. We establish existence, uniqueness and moment bounds of the r ...