Summary
In stereochemistry, enantiomeric excess (ee) is a measurement of purity used for chiral substances. It reflects the degree to which a sample contains one enantiomer in greater amounts than the other. A racemic mixture has an ee of 0%, while a single completely pure enantiomer has an ee of 100%. A sample with 70% of one enantiomer and 30% of the other has an ee of 40% (70% − 30%). Enantiomeric excess is defined as the absolute difference between the mole fraction of each enantiomer: where In practice, it is most often expressed as a percent enantiomeric excess. The enantiomeric excess can be determined in another way if we know the amount of each enantiomer produced. If one knows the moles of each enantiomer produced then: Enantiomeric excess is used as one of the indicators of the success of an asymmetric synthesis. For mixtures of diastereomers, there are analogous definitions and uses for diastereomeric excess and percent diastereomeric excess. As an example, a sample with 70 % of R isomer and 30 % of S will have a percent enantiomeric excess of 40. This can also be thought of as a mixture of 40 % pure R with 60 % of a racemic mixture (which contributes half 30 % R and the other half 30 % S to the overall composition). If given the enantiomeric excess of a mixture, the fraction of the main isomer, say R, can be determined using and the lesser isomer . A non-racemic mixture of two enantiomers will have a net optical rotation. It is possible to determine the specific rotation of the mixture and, with knowledge of the specific rotation of the pure enantiomer, the optical purity can be determined. optical purity (%) = [α]_ ()/[α]_ () · 100 Ideally, the contribution of each component of the mixture to the total optical rotation is directly proportional to its mole fraction, and as a result the numerical value of the optical purity is identical to the enantiomeric excess. This has led to informal use the two terms as interchangeable, especially because optical purity was the traditional way of measuring enantiomeric excess.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.