Concept

Crossing number (knot theory)

In the mathematical area of knot theory, the crossing number of a knot is the smallest number of crossings of any diagram of the knot. It is a knot invariant. By way of example, the unknot has crossing number zero, the trefoil knot three and the figure-eight knot four. There are no other knots with a crossing number this low, and just two knots have crossing number five, but the number of knots with a particular crossing number increases rapidly as the crossing number increases. Tables of prime knots are traditionally indexed by crossing number, with a subscript to indicate which particular knot out of those with this many crossings is meant (this sub-ordering is not based on anything in particular, except that torus knots then twist knots are listed first). The listing goes 31 (the trefoil knot), 41 (the figure-eight knot), 51, 52, 61, etc. This order has not changed significantly since P. G. Tait published a tabulation of knots in 1877. There has been very little progress on understanding the behavior of crossing number under rudimentary operations on knots. A big open question asks if the crossing number is additive when taking knot sums. It is also expected that a satellite of a knot K should have larger crossing number than K, but this has not been proven. Additivity of crossing number under knot sum has been proven for special cases, for example if the summands are alternating knots (or more generally, adequate knot), or if the summands are torus knots. Marc Lackenby has also given a proof that there is a constant N > 1 such that , but his method, which utilizes normal surfaces, cannot improve N to 1. There are connections between the crossing number of a knot and the physical behavior of DNA knots. For prime DNA knots, crossing number is a good predictor of the relative velocity of the DNA knot in agarose gel electrophoresis. Basically, the higher the crossing number, the faster the relative velocity. For composite knots, this does not appear to be the case, although experimental conditions can drastically change the results.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Related publications (14)
Related concepts (9)
Trefoil knot
In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining together the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory. The trefoil knot is named after the three-leaf clover (or trefoil) plant. The trefoil knot can be defined as the curve obtained from the following parametric equations: The (2,3)-torus knot is also a trefoil knot.
Chiral knot
In the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image (when identical while reversed). An oriented knot that is equivalent to its mirror image is an amphicheiral knot, also called an achiral knot. The chirality of a knot is a knot invariant. A knot's chirality can be further classified depending on whether or not it is invertible. There are only five knot symmetry types, indicated by chirality and invertibility: fully chiral, invertible, positively amphicheiral noninvertible, negatively amphicheiral noninvertible, and fully amphicheiral invertible.
Prime knot
In knot theory, a prime knot or prime link is a knot that is, in a certain sense, indecomposable. Specifically, it is a non-trivial knot which cannot be written as the knot sum of two non-trivial knots. Knots that are not prime are said to be composite knots or composite links. It can be a nontrivial problem to determine whether a given knot is prime or not. A family of examples of prime knots are the torus knots. These are formed by wrapping a circle around a torus p times in one direction and q times in the other, where p and q are coprime integers.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.