Concept

Kepler orbit

In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways. In most applications, there is a large central body, the center of mass of which is assumed to be the center of mass of the entire system. By decomposition, the orbits of two objects of similar mass can be described as Kepler orbits around their common center of mass, their barycenter. From ancient times until the 16th and 17th centuries, the motions of the planets were believed to follow perfectly circular geocentric paths as taught by the ancient Greek philosophers Aristotle and Ptolemy. Variations in the motions of the planets were explained by smaller circular paths overlaid on the larger path (see epicycle). As measurements of the planets became increasingly accurate, revisions to the theory were proposed. In 1543, Nicolaus Copernicus published a heliocentric model of the Solar System, although he still believed that the planets traveled in perfectly circular paths centered on the Sun. In 1601, Johannes Kepler acquired the extensive, meticulous observations of the planets made by Tycho Brahe. Kepler would spend the next five years trying to fit the observations of the planet Mars to various curves. In 1609, Kepler published the first two of his three laws of planetary motion.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MATH-487: Topics in stochastic analysis
This course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
EE-585: Space mission design and operations
This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is partly based on the practical space
Show more
Related lectures (63)
Kinetic Theory of Plasma: Linearized Vlasov Equations
Explores the kinetic theory of plasma, focusing on linearized Vlasov equations in hot magnetized plasmas and the behavior of plasma particles in phase space.
Central Motion: Conic Sections and Kepler's Laws
Explores trajectory parameters, types, and Kepler's laws in central motion scenarios.
Stellar Orbits in Spherical Potentials
Explores stellar orbits in spherical potentials, including Keplerian orbits, nearly circular orbits, and the Miyamoto-Nagai potential.
Show more
Related publications (35)

Super-harmonically resonant swirling waves in longitudinally forced circular cylinders

François Gallaire, Alessandro Bongarzone, Alice Evelyne Julienne Marcotte

Resonant sloshing in circular cylinders was studied by Faltinsen et al. (J. Fluid Mech., vol. 804, 2016, pp. 608-645), whose theory was used to describe steady-state resonant waves due to a time-harmonic container's elliptic orbits. In the limit of longitu ...
CAMBRIDGE UNIV PRESS2023

Advancing spacecraft demisability through a novel composite bolt joint system: a step toward sustainable and safe space environments

Véronique Michaud, Alexandre Achille Looten, Muriel Richard, Antonio Caiazzo

From the recent awareness of the booming number of space debris and their derived worldwide re-entry event threat originating from the use of high survivability components, complementary mitigation measures must be taken for future orbital elements. In thi ...
2023

Gaia Focused Product Release: Asteroid orbital solution: Properties and assessment

Stephan Morgenthaler, Shuangqing Liao

Context. We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, w ...
Les Ulis Cedex A2023
Show more
Related concepts (26)
Mean motion
In orbital mechanics, mean motion (represented by n) is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. The concept applies equally well to a small body revolving about a large, massive primary body or to two relatively same-sized bodies revolving about a common center of mass.
Semi-major and semi-minor axes
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.
Kepler problem
In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The problem is to find the position or speed of the two bodies over time given their masses, positions, and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.
Show more
Related MOOCs (2)
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.