Dependence analysisIn compiler theory, dependence analysis produces execution-order constraints between statements/instructions. Broadly speaking, a statement S2 depends on S1 if S1 must be executed before S2. Broadly, there are two classes of dependencies--control dependencies and data dependencies. Dependence analysis determines whether it is safe to reorder or parallelize statements. Control dependency is a situation in which a program instruction executes if the previous instruction evaluates in a way that allows its execution.
Automatic parallelizationAutomatic parallelization, also auto parallelization, or autoparallelization refers to converting sequential code into multi-threaded and/or vectorized code in order to use multiple processors simultaneously in a shared-memory multiprocessor (SMP) machine. Fully automatic parallelization of sequential programs is a challenge because it requires complex program analysis and the best approach may depend upon parameter values that are not known at compilation time.
Automatic vectorizationAutomatic vectorization, in parallel computing, is a special case of automatic parallelization, where a computer program is converted from a scalar implementation, which processes a single pair of operands at a time, to a vector implementation, which processes one operation on multiple pairs of operands at once. For example, modern conventional computers, including specialized supercomputers, typically have vector operations that simultaneously perform operations such as the following four additions (via SIMD or SPMD hardware): However, in most programming languages one typically writes loops that sequentially perform additions of many numbers.
Optimizing compilerIn computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.