Related concepts (39)
Hyperthermophile
A hyperthermophile is an organism that thrives in extremely hot environments—from 60 °C (140 °F) upwards. An optimal temperature for the existence of hyperthermophiles is often above 80 °C (176 °F). Hyperthermophiles are often within the domain Archaea, although some bacteria are also able to tolerate extreme temperatures. Some of these bacteria are able to live at temperatures greater than 100 °C, deep in the ocean where high pressures increase the boiling point of water.
Antiparallel (biochemistry)
In biochemistry, two biopolymers are antiparallel if they run parallel to each other but with opposite directionality (alignments). An example is the two complementary strands of a DNA double helix, which run in opposite directions alongside each other. Nucleic acid molecules have a phosphoryl (5') end and a hydroxyl (3') end. This notation follows from organic chemistry nomenclature, and can be used to define the movement of enzymes such as DNA polymerases relative to the DNA strand in a non-arbitrary manner.
Bioenergetics
Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to production and utilization of energy in forms such as adenosine triphosphate (ATP) molecules.
Deinococcus radiodurans
Deinococcus radiodurans is an extremophilic bacterium and one of the most radiation-resistant organisms known. It can survive cold, dehydration, vacuum, and acid, and therefore is known as a polyextremophile. It has been listed as the world's toughest known bacterium in The Guinness Book Of World Records. The name Deinococcus radiodurans derives from the Ancient Greek δεινός () and κόκκος () meaning "terrible grain/berry" and the Latin radius and durare, meaning "radiation surviving".
Autopoiesis
The term autopoiesis () refers to a system capable of producing and maintaining itself by creating its own parts. The term was introduced in the 1972 publication Autopoiesis and Cognition: The Realization of the Living by Chilean biologists Humberto Maturana and Francisco Varela to define the self-maintaining chemistry of living cells. The concept has since been applied to the fields of cognition, systems theory, architecture and sociology. Niklas Luhmann briefly introduced the concept of autopoiesis to organizational theory.
Biological process
Biological processes are those processes that are vital for an organism to live, and that shape its capacities for interacting with its environment. Biological processes are made of many chemical reactions or other events that are involved in the persistence and transformation of life forms. Metabolism and homeostasis are examples. Biological processes within an organism can also work as bioindicators. Scientists are able to look at an individual's biological processes to monitor the effects of environmental changes.
Holozoa
Holozoa is a group of organisms that includes animals and their closest single-celled (protist) relatives, but excludes fungi and all other organisms. It is a monophyletic group or clade, a lineage consisting of all descendants of a common ancestor. Among these descendants, the protists are of high interest because of their close relationship to animals: in the search for the genes responsible for animal multicellularity within these protists, they help elucidate the nature of the unicellular ancestor of animals.
Carbon-based life
Carbon is a primary component of all known life on Earth, representing approximately 45–50% of all dry biomass. Carbon compounds occur naturally in great abundance on Earth. Complex biological molecules consist of carbon atoms bonded with other elements, especially oxygen and hydrogen and frequently also nitrogen, phosphorus, and sulfur (collectively known as CHNOPS). Because it is lightweight and relatively small in size, carbon molecules are easy for enzymes to manipulate.
Realm (virology)
In virology, realm is the highest taxonomic rank established for viruses by the International Committee on Taxonomy of Viruses (ICTV), which oversees virus taxonomy.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.