Starspots are stellar phenomena, so-named by analogy with sunspots. Spots as small as sunspots have not been detected on other stars, as they would cause undetectably small fluctuations in brightness. The commonly observed starspots are in general much larger than those on the Sun: up to about 30% of the stellar surface may be covered, corresponding to starspots 100 times larger than those on the Sun. To detect and measure the extent of starspots one uses several types of methods. For rapidly rotating stars – Doppler imaging and Zeeman-Doppler imaging. With the Zeeman-Doppler imaging technique the direction of the magnetic field on stars can be determined since spectral lines are split according to the Zeeman effect, revealing the direction and magnitude of the field. For slowly rotating stars – Line Depth Ratio (LDR). Here one measures two different spectral lines, one sensitive to temperature and one which is not. Since starspots have a lower temperature than their surroundings the temperature-sensitive line changes its depth. From the difference between these two lines the temperature and size of the spot can be calculated, with a temperature accuracy of 10K. For eclipsing binary stars – Eclipse mapping produces images and maps of spots on both stars. For giant binary stars - Very-long-baseline interferometry For stars with transiting extrasolar planets – Light curve variations. Observed starspots have a temperature which is in general 500–2000 kelvins cooler than the stellar photosphere. This temperature difference could give rise to a brightness variation up to 0.6 magnitudes between the spot and the surrounding surface. There also seems to be a relation between the spot temperature and the temperature for the stellar photosphere, indicating that starspots behave similarly for different types of stars (observed in G–K dwarfs). The lifetime for a starspot depends on its size. For small spots the lifetime is proportional to their size, similar to spots on the Sun.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.