In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness) at each point of space can be assumed to be unchanged by the deformation.
With this assumption, the equations of continuum mechanics are considerably simplified. This approach may also be called small deformation theory, small displacement theory, or small displacement-gradient theory. It is contrasted with the finite strain theory where the opposite assumption is made.
The infinitesimal strain theory is commonly adopted in civil and mechanical engineering for the stress analysis of structures built from relatively stiff elastic materials like concrete and steel, since a common goal in the design of such structures is to minimize their deformation under typical loads. However, this approximation demands caution in the case of thin flexible bodies, such as rods, plates, and shells which are susceptible to significant rotations, thus making the results unreliable.
For infinitesimal deformations of a continuum body, in which the displacement gradient (2nd order tensor) is small compared to unity, i.e. ,
it is possible to perform a geometric linearization of any one of the (infinitely many possible) strain tensors used in finite strain theory, e.g. the Lagrangian strain tensor , and the Eulerian strain tensor . In such a linearization, the non-linear or second-order terms of the finite strain tensor are neglected. Thus we have
or
and
or
This linearization implies that the Lagrangian description and the Eulerian description are approximately the same as there is little difference in the material and spatial coordinates of a given material point in the continuum. Therefore, the material displacement gradient components and the spatial displacement gradient components are approximately equal.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours introduit les bases de la mécanique des structures : calcul des contraintes et déformations provoquées par les forces extérieures et calcul des déformations. Ces enseignements théoriques sont
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Suspended epitaxial gallium nitride (GaN) on silicon (Si) photonic crystal devices suffer from large residual tensile strain, especially for long waveguides, because fine structures tend to crack due to large stress. By introducing spring-like tethers, des ...
In continuum mechanics, stress is a physical quantity that describes forces present during deformation. An object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has units of force per area, such as newtons per square meter (N/m2) or pascal (Pa).
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F_s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram.
Explores relative deformation in 3D through strain matrix and displacement gradient, emphasizing constraints, stress-strain relations, and equilibrium equations.
Interface stress is a fundamental descriptor for interphase boundaries and is defined in strict relation to the interface energy. In nanomultilayers with their intrinsically high interface density, the functional properties are dictated by the interface st ...
A common method for creating compliant electrodes for dielectric elastomer actuators (DEAs) and soft sensors is to incorporate electrically conductive carbon particles into a polymer matrix. However, using unidirectional aligned carbon fibers instead not o ...
Society of Photo-Optical Instrumentation Engineers (SPIE)2024