Concept

Indian mathematics

Summary
Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, and Varāhamihira. The decimal number system in use today was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, and algebra. In addition, trigonometry was further advanced in India, and, in particular, the modern definitions of sine and cosine were developed there. These mathematical concepts were transmitted to the Middle East, China, and Europe and led to further developments that now form the foundations of many areas of mathematics. Ancient and medieval Indian mathematical works, all composed in Sanskrit, usually consisted of a section of sutras in which a set of rules or problems were stated with great economy in verse in order to aid memorization by a student. This was followed by a second section consisting of a prose commentary (sometimes multiple commentaries by different scholars) that explained the problem in more detail and provided justification for the solution. In the prose section, the form (and therefore its memorization) was not considered so important as the ideas involved. All mathematical works were orally transmitted until approximately 500 BCE; thereafter, they were transmitted both orally and in manuscript form. The oldest extant mathematical document produced on the Indian subcontinent is the birch bark Bakhshali Manuscript, discovered in 1881 in the village of Bakhshali, near Peshawar (modern day Pakistan) and is likely from the 7th century CE. A later landmark in Indian mathematics was the development of the series expansions for trigonometric functions (sine, cosine, and arc tangent) by mathematicians of the Kerala school in the 15th century CE.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (27)
HUM-453: Philosophical perspectives on the exact sciences II
The course considers central themes in the philosophy of science. Starting from the debate between Leibniz and Newton about space and time, we move on to the transition from classical to quantum physi
MATH-101(a): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-101(e): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Show more
Related lectures (32)
Elliptical Curves: Construction and Variants
Explores the construction and variants of elliptical curves, including historical stonecutting methods and architectural considerations.
Mathematical Equation Rule
Covers the process of converting handwritten entries into text and sharing mathematical equation rules.
Geometric Constructions: Duplication of the Cube
Explores the historical significance and geometric methods for duplicating the cube.
Show more
Related publications (11)

The time-domain Cartesian multipole expansion of electromagnetic fields

Marcos Rubinstein, Farhad Rachidi-Haeri, Elias Per Joachim Le Boudec, Chaouki Kasmi, Nicolas Mora Parra, Emanuela Radici

Time-domain solutions of Maxwell’s equations in homogeneous and isotropic media are paramount to studying transient or broadband phenomena. However, analytical solutions are generally unavailable for practical applications, while numerical solutions are co ...
2024

A taxonomy of surprise definitions

Wulfram Gerstner, Johanni Michael Brea, Alireza Modirshanechi

Surprising events trigger measurable brain activity and influence human behavior by affecting learning, memory, and decision-making. Currently there is, however, no consensus on the definition of surprise. Here we identify 18 mathematical definitions of su ...
2022

Generalized Poisson Summation Formulas for Continuous Functions of Polynomial Growth

Michaël Unser, John Paul Ward, Quy Ha Nguyen

The Poisson summation formula (PSF) describes the equivalence between the sampling of an analog signal and the periodization of its frequency spectrum. In engineering textbooks, the PSF is usually stated formally without explicit conditions on the signal f ...
2017
Show more
Related concepts (43)
Mahāvīra (mathematician)
Mahāvīra (or Mahaviracharya, "Mahavira the Teacher") was a 9th-century Jain mathematician possibly born in Mysore, in India. He authored Gaṇita-sāra-saṅgraha (Ganita Sara Sangraha) or the Compendium on the gist of Mathematics in 850 AD. He was patronised by the Rashtrakuta king Amoghavarsha. He separated astrology from mathematics. It is the earliest Indian text entirely devoted to mathematics. He expounded on the same subjects on which Aryabhata and Brahmagupta contended, but he expressed them more clearly.
Parameshvara Nambudiri
Vatasseri Parameshvara Nambudiri ( () 1380–1460) was a major Indian mathematician and astronomer of the Kerala school of astronomy and mathematics founded by Madhava of Sangamagrama. He was also an astrologer. Parameshvara was a proponent of observational astronomy in medieval India and he himself had made a series of eclipse observations to verify the accuracy of the computational methods then in use. Based on his eclipse observations, Parameshvara proposed several corrections to the astronomical parameters which had been in use since the times of Aryabhata.
Pell number
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82.
Show more