Related people (21)
Tobias Kippenberg
Tobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics.  EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München  2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany  ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology  PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for “contributions to Optomechanics”) 2009 Helmholtz Prize for Metrology (for invention of the “monolithic frequency comb”) 2009  1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996  FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002  Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000   RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology  PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals  Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en  h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm  KEY PUBLICATIONS AND REVIEWS:   A. Ghadimi, et al.  Elastic strain engineering for ultra high Q nanomechanical oscillators  Science, (2018)  Trocha, et al.  Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos]  Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos]  V. Brasch, et al.  Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015)  Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics.  Reviews of Modern Physics 86, 1391-1452, (2014)  Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate.  Nature (2014).  Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012).  Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011).  Weis, S. et al. Optomechanically induced transparency.  Science 330, 1520-1523 (2010).  Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale.  Science 321, 1172-1176, (2008).  Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator.  Nature (2007)  Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction.  Physical Review Letters 97, (2006).
Vincenzo Savona
Vincenzo Savona studied physics in Pisa at the Scuola Normale Superiore and the University of Pisa, prior to completing his PhD at the EPFL's Institute of Theoretical Physics. Subsequently he did post-doctoral work, first at the EPFL and then in the physics department of the Humboldt University of Berlin. In 2002, he returned to the EPFL to create his own research group, receiving a "professeur boursier" fellowship from the Swiss National Science Foundation. In 2006, he was appointed tenure-track assistant professor at the EPFL and joined the NCCR for Quantum Photonics. In 2010 he was appointed associate professor. Currently he directs the Laboratory of Theoretical Physics of Nanosystems.
Benoît Marie Joseph Deveaud
Benoit Deveaud is now Research Director at Ecole Polytechnique in Palaiseau (France) Benoît Deveaud was born in France in 1952. In 1971, he enters Ecole Polytechnique in Paris where he specializes in physics. In 1974, he joins the National Center for research in Telecommunications (CNET). He undertakes at the same time studies on the main impurity centers in III-V semiconductors, and continues his studies in physics by preparing a diploma in solid state physics in Rennes. In 1984, he defends his PhD thesis at the University of Grenoble, under the supervision of Gérard Martinez. Meanwhile, his team gets interested in semiconductor microstructures and launches studies on the structural and optical properties of superlattices based on gallium arsenide. These studies highlight for example vertical transport in superlattices as well as the quantification of excitonic energies in a quantum well. In 1986 he joins the team of Daniel Chemla in Bell Laboratories (Holmdel, USA) and takes part in the development of the first luminescence set-up having a temporal resolution better than 1 picosecond. He studies then ultrafast processes in quantum wells. Returning to France in 1988, at CNET, he coaches a laboratory of high-speed studies, interested in the optical and electronic properties of semiconductor materials. Appointed professor in Physics at EPFL in October 1993, his research team studies the physics of ultrafast processes in semiconductor micro and nanostructures and in devices that use them. He has been the Director the Institute of Micro and Optoelectronics since 1998, then of the Institute of Quantum Photonic and Electronics from 2003 to 2008. His team takes an active part in the "Quantum Photonics" National Center of Competence in Research, of which he was the Deputy Director from 2001 to 2005 then the Director from July 2005 till the end of the NCCR in 2013 From 2008 till 2014 he has been Dean for Research at EPFL and president of the research commission. Starting in 2014, he has been head of Physics, till his departure from EPFL in 2017. He has been a divisional editor of Physical Review Letters from 2001 to 2007.
Pasquale Scarlino
I obtained my master's degree in Physics at the University of Salento, Lecce (Italy) in February 2011. During 2006-2011, I have also been a student of Scuola Superiore ISUFI (SSI). SSI is one of six schools of excellence established in Italy to develop the intellectual capital in technological and social sciences. I conducted an external Master thesis project during an 8 months internship in the Quantum Transport Group at TU Delft, under the supervision of Prof. L.M.K. Vandersypen. There, I implemented the Quantum Point Contact Radio-Frequency Reflectometry technique, which allows increasing the single-shot electron spin readout bandwidth and is currently routinely used in the group.I obtained my Ph.D. degree in February 2016, in the Spin Qubits group of Prof. L.M.K. Vandersypen at the Kavli Institute of Nanoscience-Qutech (TU Delft). During my Ph.D. I have been leading the Si/SiGe spin qubits project, collaborating with the M. Eriksson Group at Wisconsin University. In parallel, I have been working on other different projects, in particular with GaAs depletion quantum dots, high impedance superconducting resonators, and surface acoustic wave resonators. I have been working as a Postdoc fellow in the group of Prof. A. Wallraff (Quantum Device Lab) at ETH Zurich. My main project, in collaboration with the group of Prof. K. Ensslin and Prof. T. Ihn, consisted in integrating semiconductor and superconductor technologies. Realizing a well-controlled interface between the semiconductor and superconductor-based quantum information technologies may allow harnessing the best of both device architectures, for example by providing an interface between strongly coupled charge state and high coherence spin states. Furthermore, it enables the possibility to explore light/matter hybridization in a class of solid-state systems and regimes that are new in the context of quantum optics.From June 2019 till September 2020, I have been a Senior Researcher at Microsoft Station Q Copenhagen and at the Center for Quantum Devices in Copenhagen, focusing on developing semiconductor-superconducting hybrid hardware for topologically protected quantum computation.Since October 2020, I am a tenure track Assistant Professor of Physics in the School of Basic Sciences at the EPFL where I founded the Hybrid Quantum Circuit (HQC) laboratory.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.