In coding theory, the dual code of a linear code is the linear code defined by where is a scalar product. In linear algebra terms, the dual code is the annihilator of C with respect to the bilinear form . The dimension of C and its dual always add up to the length n: A generator matrix for the dual code is the parity-check matrix for the original code and vice versa. The dual of the dual code is always the original code. A self-dual code is one which is its own dual. This implies that n is even and dim C = n/2. If a self-dual code is such that each codeword's weight is a multiple of some constant , then it is of one of the following four types: Type I codes are binary self-dual codes which are not doubly even. Type I codes are always even (every codeword has even Hamming weight). Type II codes are binary self-dual codes which are doubly even. Type III codes are ternary self-dual codes. Every codeword in a Type III code has Hamming weight divisible by 3. Type IV codes are self-dual codes over F4. These are again even. Codes of types I, II, III, or IV exist only if the length n is a multiple of 2, 8, 4, or 2 respectively. If a self-dual code has a generator matrix of the form , then the dual code has generator matrix , where is the identity matrix and .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (2)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.