**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Trigonometry

Summary

Trigonometry () is a branch of mathematics concerned with relationships between angles and ratios of lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such as sine.
Throughout history, trigonometry has been applied in areas such as geodesy, surveying, celestial mechanics, and navigation.
Trigonometry is known for its many identities. These
trigonometric identities are commonly used for rewriting trigonometrical expressions with the aim to simplify an expression, to find a more useful form of an expression, or to solve an equation.
History of trigonometry
Sumerian astronomers studied angle measure, using a division of circles into 360 degrees. They, and later the Babylonians, studied the ratios of the sides of similar triangles and discovered some properties of these ratios but did not turn that into a systematic method for finding sides and angles of triangles. The ancient Nubians used a similar method.
In the 3rd century BC, Hellenistic mathematicians such as Euclid and Archimedes studied the properties of chords and inscribed angles in circles, and they proved theorems that are equivalent to modern trigonometric formulae, although they presented them geometrically rather than algebraically. In 140 BC, Hipparchus (from Nicaea, Asia Minor) gave the first tables of chords, analogous to modern tables of sine values, and used them to solve problems in trigonometry and spherical trigonometry. In the 2nd century AD, the Greco-Egyptian astronomer Ptolemy (from Alexandria, Egypt) constructed detailed trigonometric tables (Ptolemy's table of chords) in Book 1, chapter 11 of his Almagest. Ptolemy used chord length to define his trigonometric functions, a minor difference from the sine convention we use today.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (58)

Related courses (14)

Related publications (20)

Related MOOCs (5)

Related lectures (191)

EE-106: Electrical engineering science & technology

Ce cours introduit les lois fondamentales de l'électricité et les méthodes permettant d'analyser des circuits électriques linéaires, composés de résistances, condensateurs et inductances. On commencer

ENV-140: Fundamentals of geomatics

Bases de la géomatique pour les ingénieur·e·s civil et en environnement. Présentation des méthodes d'acquisition, de gestion et de représentation des géodonnées. Apprentissage pratique avec des méthod

MATH-200: Analysis III

Apprendre les bases de l'analyse vectorielle et de l'analyse complexe.

Law of sines

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals; The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation.

Zij

A zij (zīj) is an Islamic astronomical book that tabulates parameters used for astronomical calculations of the positions of the sun, moon, stars, and planets. The name zij is derived from the Middle Persian term zih or zīg ("cord"). The term is believed to refer to the arrangement of threads in weaving, which was transferred to the arrangement of rows and columns in tabulated data. Some such books were referred to as qānūn, derived from the equivalent Greek word, .

Degree (angle)

A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI brochure as an accepted unit. Because a full rotation equals 2pi radians, one degree is equivalent to pi/180 radians. The original motivation for choosing the degree as a unit of rotations and angles is unknown.

Trigonometric Functions, Logarithms and Exponentials

Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Trigonometric Functions, Logarithms and Exponentials

Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Covers the inverse Pythagorean proof and provides detailed solutions to Basel exercises.

Introduces derivatives, trigonometry, and motion principles through basic and trigonometric functions differentiation.

Explores harmonic oscillations and the superposition principle for solving trigonometric equations efficiently.

Jan Skaloud, Davide Antonio Cucci

The use of Unmanned Aerial Vehicles (UAVs) has surged in the last two decades, making them popular instruments for a wide range of applications, and leading to a remarkable number of scientific contributions in geoscience, remote sensing and engineering. H ...

2022The measurement of different atmospheric flow quantities is of utmost importance for a correct understanding of most atmospheric phenomena. Researchers and industry in the fields of meteorology and wind engineering demand extensive and accurate measurement ...

Denis Gillet, Jean-Paul Richard Kneib, Mohamed Bouri, Laleh Makarem

Projects such as "The Dark Energy Spectroscopic Instrument" (DESI) [1] or "The Multi Object Optical and Near-infrared Spectrograph" (MOONS) [5] are developing spectrographs, composed of more than thousand of optical fibers in a confined hexagonal focal pla ...