Cyclomatic complexityCyclomatic complexity is a software metric used to indicate the complexity of a program. It is a quantitative measure of the number of linearly independent paths through a program's source code. It was developed by Thomas J. McCabe, Sr. in 1976. Cyclomatic complexity is computed using the control-flow graph of the program: the nodes of the graph correspond to indivisible groups of commands of a program, and a directed edge connects two nodes if the second command might be executed immediately after the first command.
Software qualityIn the context of software engineering, software quality refers to two related but distinct notions: Software's functional quality reflects how well it complies with or conforms to a given design, based on functional requirements or specifications. That attribute can also be described as the fitness for purpose of a piece of software or how it compares to competitors in the marketplace as a worthwhile product. It is the degree to which the correct software was produced.
Source lines of codeSource lines of code (SLOC), also known as lines of code (LOC), is a software metric used to measure the size of a computer program by counting the number of lines in the text of the program's source code. SLOC is typically used to predict the amount of effort that will be required to develop a program, as well as to estimate programming productivity or maintainability once the software is produced. Many useful comparisons involve only the order of magnitude of lines of code in a project.
COCOMOThe Constructive Cost Model (COCOMO) is a procedural software cost estimation model developed by Barry W. Boehm. The model parameters are derived from fitting a regression formula using data from historical projects (63 projects for COCOMO 81 and 163 projects for COCOMO II). The constructive cost model was developed by Barry W. Boehm in the late 1970s and published in Boehm's 1981 book Software Engineering Economics as a model for estimating effort, cost, and schedule for software projects.
Software sizingSoftware sizing or software size estimation is an activity in software engineering that is used to determine or estimate the size of a software application or component in order to be able to implement other software project management activities (such as estimating or tracking). Size is an inherent characteristic of a piece of software just like weight is an inherent characteristic of a tangible material. Software sizing is different from software effort estimation.
Computer performanceIn computing, computer performance is the amount of useful work accomplished by a computer system. Outside of specific contexts, computer performance is estimated in terms of accuracy, efficiency and speed of executing computer program instructions. When it comes to high computer performance, one or more of the following factors might be involved: Short response time for a given piece of work. High throughput (rate of processing work). Low utilization of computing resource(s). Fast (or highly compact) data compression and decompression.
Software developmentSoftware development is the process of conceiving, specifying, designing, programming, documenting, testing, and bug fixing involved in creating and maintaining applications, frameworks, or other software components. Software development involves writing and maintaining the source code, but in a broader sense, it includes all processes from the conception of the desired software through the final manifestation, typically in a planned and structured process often overlapping with software engineering.
Function pointThe function point is a "unit of measurement" to express the amount of business functionality an information system (as a product) provides to a user. Function points are used to compute a functional size measurement (FSM) of software. The cost (in dollars or hours) of a single unit is calculated from past projects. There are several recognized standards and/or public specifications for sizing software based on Function Point. 1. ISO Standards FiSMA: ISO/IEC 29881:2010 Information technology – Systems and software engineering – FiSMA 1.
Software testingSoftware testing is the act of examining the artifacts and the behavior of the software under test by validation and verification. Software testing can also provide an objective, independent view of the software to allow the business to appreciate and understand the risks of software implementation. Test techniques include, but are not necessarily limited to: analyzing the product requirements for completeness and correctness in various contexts like industry perspective, business perspective, feasibility and viability of implementation, usability, performance, security, infrastructure considerations, etc.
Software bugA software bug is an error, flaw or fault in the design, development, or operation of computer software that causes it to produce an incorrect or unexpected result, or to behave in unintended ways. The process of finding and correcting bugs is termed "debugging" and often uses formal techniques or tools to pinpoint bugs. Since the 1950s, some computer systems have been designed to deter, detect or auto-correct various computer bugs during operations.