Fitness (often denoted or ω in population genetics models) is the quantitative representation of individual reproductive success. It is also equal to the average contribution to the gene pool of the next generation, made by the same individuals of the specified genotype or phenotype. Fitness can be defined either with respect to a genotype or to a phenotype in a given environment or time. The fitness of a genotype is manifested through its phenotype, which is also affected by the developmental environment. The fitness of a given phenotype can also be different in different selective environments.
With asexual reproduction, it is sufficient to assign fitnesses to genotypes. With sexual reproduction, recombination scrambles alleles into different genotypes every generation; in this case, fitness values can be assigned to alleles by averaging over possible genetic backgrounds. Natural selection tends to make alleles with higher fitness more common over time, resulting in Darwinian evolution.
The term "Darwinian fitness" can be used to make clear the distinction with physical fitness. Fitness does not include a measure of survival or life-span; Herbert Spencer's well-known phrase "survival of the fittest" should be interpreted as: "Survival of the form (phenotypic or genotypic) that will leave the most copies of itself in successive generations."
Inclusive fitness differs from individual fitness by including the ability of an allele in one individual to promote the survival and/or reproduction of other individuals that share that allele, in preference to individuals with a different allele. One mechanism of inclusive fitness is kin selection.
Fitness is often defined as a propensity or probability, rather than the actual number of offspring. For example, according to Maynard Smith, "Fitness is a property, not of an individual, but of a class of individuals—for example homozygous for allele A at a particular locus. Thus the phrase 'expected number of offspring' means the average number, not the number produced by some one individual.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In biology, the word gene (from γένος, génos; meaning generation or birth or gender) can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function.
Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure. Population genetics was a vital ingredient in the emergence of the modern evolutionary synthesis. Its primary founders were Sewall Wright, J. B. S. Haldane and Ronald Fisher, who also laid the foundations for the related discipline of quantitative genetics.
'Charles Robert Darwin' (ˈdɑrwɪn ; 12 February 1809 – 19 April 1882) was an English naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all species of life have descended from a common ancestor is now generally accepted and considered a fundamental concept in science. In a joint publication with Alfred Russel Wallace, he introduced his scientific theory that this branching pattern of evolution resulted from a process he called natural selection, in which the struggle for existence has a similar effect to the artificial selection involved in selective breeding.
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
Torque teno virus (TTV) is considered to be an ubiquitous member of the commensal human blood virome commonly reported in mixed genotype co-infections. This study investigates the genomic diversity of TTV in blood samples from 816 febrile Tanzanian childre ...
In settings with high tuberculosis (TB) endemicity, distinct genotypes of the Mycobacterium tuberculosis complex (MTBC) often differ in prevalence. However, the factors leading to these differences remain poorly understood. Here we studied the MTBC populat ...
Mutations to gene regulatory networks can be maladaptive or a source of evolutionary novelty. Epistasis con-founds our understanding of how mutations affect the expression patterns of gene regulatory networks, a chal-lenge exacerbated by the dependence of ...