In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any object in n-dimensional Euclidean space.
In geometry, one often assumes uniform mass density, in which case the barycenter or center of mass coincides with the centroid. Informally, it can be understood as the point at which a cutout of the shape (with uniformly distributed mass) could be perfectly balanced on the tip of a pin.
In physics, if variations in gravity are considered, then a center of gravity can be defined as the weighted mean of all points weighted by their specific weight.
In geography, the centroid of a radial projection of a region of the Earth's surface to sea level is the region's geographical center.
The term "centroid" is of recent coinage (1814). It is used as a substitute for the older terms "center of gravity" and "center of mass" when the purely geometrical aspects of that point are to be emphasized. The term is peculiar to the English language; the French, for instance, use "centre de gravité" on most occasions, and others use terms of similar meaning.
The center of gravity, as the name indicates, is a notion that arose in mechanics, most likely in connection with building activities. It is uncertain when the idea first appeared, as the concept likely occurred to many people individually with minor differences. Nonetheless, the center of gravity of figures was studied extensively in Antiquity; Bossut credits Archimedes (287–212 BCE) with being the first to find the centroid of plane figures, although he never defines it. A treatment of centroids of solids by Archimedes has been lost.
It is unlikely that Archimedes learned the theorem that the medians of a triangle meet in a point—the center of gravity of the triangle—directly from Euclid, as this proposition is not in the Elements.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'objectif de ce cours est d'apprendre à réaliser de manière rigoureuse et critique des analyses par éléments finis de problèmes concrets en mécanique des solides à l'aide d'un logiciel CAE moderne.
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n-sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case n = 4, a cyclic quadrilateral.
A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on a plane, in contrast to solid 3D shapes. A two-dimensional shape or two-dimensional figure (also: 2D shape or 2D figure) may lie on a more general curved surface (a non-Euclidean two-dimensional space). Lists of shapes Some simple shapes can be put into broad categories.
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.
The geometric median, an instrumental component of the secure machine learning toolbox, is known to be effective when robustly aggregating models (or gradients), gathered from potentially malicious (or strategic) users. What is less known is the extent to ...
We study the problem of constructing epsilon-coresets for the (k, z)-clustering problem in a doubling metric M(X, d). An epsilon-coreset is a weighted subset S subset of X with weight function w : S -> R->= 0, such that for any k-subset C is an element of ...
IEEE COMPUTER SOC2018
Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, an ...