Concept

Kinetic energy weapon

A kinetic energy weapon (also known as kinetic weapon, kinetic energy warhead, kinetic warhead, kinetic projectile, kinetic kill vehicle) is a weapon based solely on a projectile's kinetic energy instead of an explosive or any other kind of payload. The term Hit-to-kill, or kinetic kill, is also used in the military aerospace field to describe kinetic energy weapons. It has been used primarily in the anti-ballistic missiles (ABM) and anti-satellite weapons (ASAT) area, but some modern anti-aircraft missiles are also hit-to-kill. Hit-to-kill systems are part of the wider class of kinetic projectiles, a class that has widespread use in the anti-tank field. Typical kinetic energy weapons are blunt projectiles such as rocks and round shots, pointed ones such as arrows, and somewhat pointed ones such as bullets. Among projectiles that do not contain explosives are those launched from railguns, coilguns, and mass drivers, as well as kinetic energy penetrators. All of these weapons work by attaining a high muzzle velocity, or initial velocity, generally up to hypervelocity, and collide with their targets, converting the kinetic energy associated with the relative velocity between the two objects into destructive shock waves and heat. Other types of kinetic weapons are accelerated over time by a rocket engine, or by gravity. In either case, it is this kinetic energy that destroys its target. Kinetic energy is a function of mass and the velocity of an object. For a kinetic energy weapon in the aerospace field, both objects are moving and it is the relative velocity that is important. In the case of the interception of a reentry vehicle (RV) from an intercontinental ballistic missile (ICBM) during the terminal phase of the approach, the RV will be traveling at approximately while the interceptor will be on the order of . Because the interceptor may not be approaching head-on, a lower bound on the relative velocity on the order of can be assumed, or converting to SI units, approximately 7150 meters per second.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.