Schlegel diagramIn geometry, a Schlegel diagram is a projection of a polytope from into through a point just outside one of its facets. The resulting entity is a polytopal subdivision of the facet in that, together with the original facet, is combinatorially equivalent to the original polytope. The diagram is named for Victor Schlegel, who in 1886 introduced this tool for studying combinatorial and topological properties of polytopes. In dimension 3, a Schlegel diagram is a projection of a polyhedron into a plane figure; in dimension 4, it is a projection of a 4-polytope to 3-space.
Great grand stellated 120-cellIn geometry, the great grand stellated 120-cell or great grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,3,3}, one of 10 regular Schläfli-Hess 4-polytopes. It is unique among the 10 for having 600 vertices, and has the same vertex arrangement as the regular convex 120-cell. It is one of four regular star polychora discovered by Ludwig Schläfli. It is named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids, and the only one containing all three modifiers in the name.
Grand 600-cellIn geometry, the grand 600-cell or grand polytetrahedron is a regular star 4-polytope with Schläfli symbol {3, 3, 5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is the only one with 600 cells. It is one of four regular star 4-polytopes discovered by Ludwig Schläfli. It was named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids.
Small stellated 120-cellIn geometry, the small stellated 120-cell or stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,5,3}. It is one of 10 regular Schläfli-Hess polytopes. It has the same edge arrangement as the great grand 120-cell, and also shares its 120 vertices with the 600-cell and eight other regular star 4-polytopes. It may also be seen as the first stellation of the 120-cell. In this sense it could be seen as analogous to the three-dimensional small stellated dodecahedron, which is the first stellation of the dodecahedron.
Icosahedral 120-cellIn geometry, the icosahedral 120-cell, polyicosahedron, faceted 600-cell or icosaplex is a regular star 4-polytope with Schläfli symbol {3,5,5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is constructed by 5 icosahedra around each edge in a pentagrammic figure. The vertex figure is a great dodecahedron. It has the same edge arrangement as the 600-cell, grand 120-cell and great 120-cell, and shares its vertices with all other Schläfli–Hess 4-polytopes except the great grand stellated 120-cell (another stellation of the 120-cell).
Grand 120-cellIn geometry, the grand 120-cell or grand polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,3,5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is one of four regular star 4-polytopes discovered by Ludwig Schläfli. It is named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids. It has the same edge arrangement as the 600-cell, icosahedral 120-cell and the same face arrangement as the great 120-cell.
Great stellated 120-cellIn geometry, the great stellated 120-cell or great stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,3,5}. It is one of 10 regular Schläfli-Hess polytopes. It is one of four regular star 4-polytopes discovered by Ludwig Schläfli. It is named by John Horton Conway, extending the naming system by Arthur Cayley for the Kepler-Poinsot solids. It has the same edge arrangement as the grand 600-cell, icosahedral 120-cell, and the same face arrangement as the grand stellated 120-cell.
Great grand 120-cellIn geometry, the great grand 120-cell or great grand polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,5/2,3}. It is one of 10 regular Schläfli-Hess polytopes. It has the same edge arrangement as the small stellated 120-cell.
Great icosahedral 120-cellIn geometry, the great icosahedral 120-cell, great polyicosahedron or great faceted 600-cell is a regular star 4-polytope with Schläfli symbol {3,5/2,5}. It is one of 10 regular Schläfli-Hess polytopes. It has the same edge arrangement as the great stellated 120-cell, and grand stellated 120-cell, and face arrangement of the grand 600-cell.
Great 120-cellIn geometry, the great 120-cell or great polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,5/2,5}. It is one of 10 regular Schläfli-Hess polytopes. It is one of the two such polytopes that is self-dual. It has the same edge arrangement as the 600-cell, icosahedral 120-cell as well as the same face arrangement as the grand 120-cell. Due to its self-duality, it does not have a good three-dimensional analogue, but (like all other star polyhedra and polychora) is analogous to the two-dimensional pentagram.