Phosphoric acid (orthophosphoric acid, monophosphoric acid or phosphoric(V) acid) is a colorless, odorless phosphorus-containing solid, and inorganic compound with the chemical formula . It is commonly encountered as an 85% aqueous solution, which is a colourless, odourless, and non-volatile syrupy liquid. It is a major industrial chemical, being a component of many fertilizers.
The compound is an acid. Removal of all three ions gives the phosphate ion . Removal of one or two protons gives dihydrogen phosphate ion , and the hydrogen phosphate ion , respectively. Phosphoric acid forms esters, called organophosphates.
The name "orthophosphoric acid" can be used to distinguish this specific acid from other "phosphoric acids", such as pyrophosphoric acid. Nevertheless, the term "phosphoric acid" often means this specific compound; and that is the current IUPAC nomenclature.
Phosphoric acid is produced industrially by one of two routes, wet processes and dry.
In the wet process, a phosphate-containing mineral such as calcium hydroxyapatite and fluorapatite are treated with sulfuric acid.
Calcium sulfate (gypsum, ) is a by-product, which is removed as phosphogypsum. The hydrogen fluoride (HF) gas is streamed into a wet (water) scrubber producing hydrofluoric acid. In both cases the phosphoric acid solution usually contains 23–33% P2O5 (32–46% ). It may be concentrated to produce commercial- or merchant-grade phosphoric acid, which contains about 54–62% (75–85% ). Further removal of water yields superphosphoric acid with a concentration above 70% (corresponding to nearly 100% ). The phosphoric acid from both processes may be further purified by removing compounds of arsenic and other potentially toxic impurities.
To produce food-grade phosphoric acid, phosphate ore is first reduced with coke in an electric arc furnace, to give elemental phosphorus. Silica is also added, resulting in the production of calcium silicate slag. Elemental phosphorus is distilled out of the furnace and burned with air to produce high-purity phosphorus pentoxide, which is dissolved in water to make phosphoric acid.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The student will learn procedures and applications of modern microfabrication technologies, as practiced in a clean room environment, in particular modern techniques that go beyond the classical steps
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Hydrogen fluoride (fluorane) is an inorganic compound with chemical formula . It is a very poisonous, colorless gas or liquid that dissolves in water to yield an aqueous solution termed hydrofluoric acid. It is the principal industrial source of fluorine, often in the form of hydrofluoric acid, and is an important feedstock in the preparation of many important compounds including pharmaceuticals and polymers, e.g. polytetrafluoroethylene (PTFE). HF is also widely used in the petrochemical industry as a component of superacids.
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid, aka. phosphoric acid . The phosphate or orthophosphate ion [PO4]3− is derived from phosphoric acid by the removal of three protons H+. Removal of one proton gives the dihydrogen phosphate ion [H2PO4]− while removal of two ions gives the hydrogen phosphate ion [HPO4]2−. These names are also used for salts of those anions, such as ammonium dihydrogen phosphate and trisodium phosphate.
Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. Solutions of HF are colorless, acidic and highly corrosive. It is used to make most fluorine-containing compounds; examples include the commonly used pharmaceutical antidepressant medication fluoxetine (Prozac) and the material PTFE (Teflon). Elemental fluorine is produced from it. It is commonly used to etch glass and silicon wafers. The principal use of hydrofluoric acid is in organofluorine chemistry.
Explores biological nutrient removal and chemical phosphorous removal in wastewater treatment plants, emphasizing denitrification and phosphate removal methods.
Introduces chemical reactions, stoichiometry, balancing equations, oxidation-reduction, electrolytes, and interatomic bonds.
Delves into advanced wastewater treatment processes, including oxygen demand, phosphate removal, and biological nitrogen removal, addressing the challenges of micropollutants.
Vast amounts of phosphogypsum (PG) which is a by-product of phosphorous acid production from apatite rock using sulphuric acid, are deposited in large piles at many locations worldwide. PG materials are added at rates of the order of megatonnes (Mt) per an ...
Paul Scherrer Institute, World Resources Forum2019
, , ,
Chemical modifications of cellulose fibers as pretreatment for cellulose nanofibrils (CNF) production have been investigated to improve the production process and the quality of obtained cellulosic nanomaterial. In this study, phosphorylation of cellulose ...
ELSEVIER SCI LTD2020
, ,
The effect of Al and of pH on the structure of calcium silicate hydrate (C-S-H), the most important hydration product in Portland and blended cement, was studied at Ca/Si similar to 1.0. The presence of Al led to higher amounts of secondary phases, larger ...