NOTOC The electrothermal instability (also known as ionization instability, non-equilibrium instability or Velikhov instability in the literature) is a magnetohydrodynamic (MHD) instability appearing in magnetized non-thermal plasmas used in MHD converters. It was first theoretically discovered in 1962 and experimentally measured into a MHD generator in 1963 by Evgeny Velikhov. "This paper shows that it is possible to assert sufficiently specifically that the ionization instability is the number one problem for the utilization of a plasma with hot electrons." This instability is a turbulence of the electron gas in a non-equilibrium plasma (i.e. where the electron temperature Te is greatly higher than the overall gas temperature Tg). It arises when a magnetic field powerful enough is applied in such a plasma, reaching a critical Hall parameter βcr. Locally, the number of electrons and their temperature fluctuate (electron density and thermal velocity) as the electric current and the electric field. The Velikhov instability is a kind of ionization wave system, almost frozen in the two temperature gas. The reader can evidence such a stationary wave phenomenon just applying a transverse magnetic field with a permanent magnet on the low-pressure control gauge (Geissler tube) provided on vacuum pumps. In this little gas-discharge bulb a high voltage electric potential is applied between two electrodes which generates an electric glow discharge (pinkish for air) when the pressure has become low enough. When the transverse magnetic field is applied on the bulb, some oblique grooves appear in the plasma, typical of the electrothermal instability. The electrothermal instability occurs extremely quickly, in a few microseconds. The plasma becomes non-homogeneous, transformed into alternating layers of high free electron and poor free electron densities. Visually the plasma appears stratified, as a "pile of plates". The Hall effect in ionized gases has nothing to do with the Hall effect in solids (where the Hall parameter is always very inferior to unity).
Basil Duval, Stefano Coda, Joan Decker, Umar Sheikh, Claudia Colandrea, Luke Simons, Jean Arthur Cazabonne, Bernhard Sieglin, Gergely Papp
Olivier Sauter, Stefano Coda, Benoît Labit, Alessandro Pau, Alexander Karpushov, Antoine Pierre Emmanuel Alexis Merle, Oleg Krutkin, Cassandre Ekta Contré, Reinart Andreas J. Coosemans, Stefano Marchioni, Yann Camenen, Matteo Vallar, Filippo Bagnato, Simon Van Mulders