Concept

Augustus De Morgan

Augustus De Morgan (27 June 1806 – 18 March 1871) was a British mathematician and logician. He formulated De Morgan's laws and introduced the term mathematical induction, making its idea rigorous. Augustus De Morgan was born in Madurai, in the Carnatic region of India in 1806. His father was Lieut.-Colonel John De Morgan (1772–1816), who held various appointments in the service of the East India Company, and his mother, Elizabeth (née Dodson, 1776–1856), was daughter of John Dodson and granddaughter of James Dodson, who computed a table of anti-logarithms (inverse logarithms). Augustus De Morgan became blind in one eye a month or two after he was born. The family moved to England when Augustus was seven months old. As his father and grandfather had both been born in India, De Morgan used to say that he was neither English, nor Scottish, nor Irish, but a Briton "unattached", using the technical term applied to an undergraduate of Oxford or Cambridge who is not a member of any one of the Colleges. When De Morgan was ten years old his father died. Mrs De Morgan resided at various places in the southwest of England, and her son received his primary education at various schools of no great account. His mathematical talents went unnoticed until he was fourteen, when a family-friend discovered him making an elaborate drawing of a figure from one of Euclid's works with a ruler and compasses. He received his secondary education from Mr Parsons, a fellow of Oriel College, Oxford, who appreciated classics better than mathematics. His mother was an active and ardent member of the Church of England, and desired that her son should become a clergyman, but by this time De Morgan had begun to show his non-conforming disposition. He became an atheist. There is a word in our language with which I shall not confuse this subject, both on account of the dishonourable use which is frequently made of it, as an imputation thrown by one sect upon another, and of the variety of significations attached to it.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
EE-110: Logic systems (for MT)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Related lectures (14)
Digital Circuits: Basics
Covers digital signal processing, binary and Boolean logic, and practical examples of digital circuits.
Boolean Algebra: Properties and Optimization
Explores Boolean algebra properties and optimization techniques using Karnaugh diagrams and De Morgan's theorems.
Boolean Algebra: Properties and Optimization
Covers Boolean algebra properties, optimization techniques, and the importance of valid groups in Karnaugh maps.
Show more
Related concepts (16)
Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Boolean algebra
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as ∧, disjunction (or) denoted as ∨, and the negation (not) denoted as ¬.
Charles Sanders Peirce
Charles Sanders Peirce (pɜrs ; September 10, 1839 – April 19, 1914) was an American scientist, mathematician, logician, and philosopher who is sometimes known as "the father of pragmatism". According to philosopher Paul Weiss, Peirce was "the most original and versatile of America's philosophers and America's greatest logician". Bertrand Russell wrote "he was one of the most original minds of the later nineteenth century and certainly the greatest American thinker ever".
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.